Properties

Label 2-398544-1.1-c1-0-45
Degree $2$
Conductor $398544$
Sign $-1$
Analytic cond. $3182.38$
Root an. cond. $56.4126$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s + 11-s + 15-s + 5·17-s + 21-s − 23-s − 4·25-s − 27-s − 2·31-s − 33-s + 35-s + 10·37-s + 2·41-s − 43-s − 45-s + 9·47-s − 6·49-s − 5·51-s − 2·53-s − 55-s − 6·59-s + 5·61-s − 63-s + 8·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.301·11-s + 0.258·15-s + 1.21·17-s + 0.218·21-s − 0.208·23-s − 4/5·25-s − 0.192·27-s − 0.359·31-s − 0.174·33-s + 0.169·35-s + 1.64·37-s + 0.312·41-s − 0.152·43-s − 0.149·45-s + 1.31·47-s − 6/7·49-s − 0.700·51-s − 0.274·53-s − 0.134·55-s − 0.781·59-s + 0.640·61-s − 0.125·63-s + 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 398544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 398544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(398544\)    =    \(2^{4} \cdot 3 \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(3182.38\)
Root analytic conductor: \(56.4126\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 398544,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 5 T + p T^{2} \) 1.17.af
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59803223616417, −12.16550545127222, −11.74440166776164, −11.40391191526426, −10.93151894375248, −10.43694065989744, −9.914272678600358, −9.603039876940640, −9.183156491922794, −8.545851431641626, −7.927658282897310, −7.705682834462557, −7.210449978925811, −6.639306974926802, −6.125595705459412, −5.786107277180517, −5.316530497198196, −4.684193422286638, −4.163792669232739, −3.755479650266567, −3.233099180927805, −2.627732886788091, −1.956238137870871, −1.240078494167161, −0.7192159650689911, 0, 0.7192159650689911, 1.240078494167161, 1.956238137870871, 2.627732886788091, 3.233099180927805, 3.755479650266567, 4.163792669232739, 4.684193422286638, 5.316530497198196, 5.786107277180517, 6.125595705459412, 6.639306974926802, 7.210449978925811, 7.705682834462557, 7.927658282897310, 8.545851431641626, 9.183156491922794, 9.603039876940640, 9.914272678600358, 10.43694065989744, 10.93151894375248, 11.40391191526426, 11.74440166776164, 12.16550545127222, 12.59803223616417

Graph of the $Z$-function along the critical line