Properties

Label 2-3952-1.1-c1-0-40
Degree $2$
Conductor $3952$
Sign $1$
Analytic cond. $31.5568$
Root an. cond. $5.61755$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 3·7-s − 2·9-s + 4·11-s + 13-s − 15-s − 3·17-s + 19-s + 3·21-s − 2·23-s − 4·25-s − 5·27-s + 4·29-s + 8·31-s + 4·33-s − 3·35-s + 37-s + 39-s + 10·41-s + 5·43-s + 2·45-s + 7·47-s + 2·49-s − 3·51-s + 2·53-s − 4·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.13·7-s − 2/3·9-s + 1.20·11-s + 0.277·13-s − 0.258·15-s − 0.727·17-s + 0.229·19-s + 0.654·21-s − 0.417·23-s − 4/5·25-s − 0.962·27-s + 0.742·29-s + 1.43·31-s + 0.696·33-s − 0.507·35-s + 0.164·37-s + 0.160·39-s + 1.56·41-s + 0.762·43-s + 0.298·45-s + 1.02·47-s + 2/7·49-s − 0.420·51-s + 0.274·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3952\)    =    \(2^{4} \cdot 13 \cdot 19\)
Sign: $1$
Analytic conductor: \(31.5568\)
Root analytic conductor: \(5.61755\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3952,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.537683527\)
\(L(\frac12)\) \(\approx\) \(2.537683527\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.318717440278510192619012802301, −8.009275093217193006626557506224, −7.12125093890743628595250217126, −6.24136212060885537165242559195, −5.52811660507401625096378789558, −4.33326634946061470771545996094, −4.08215586710840068172364753036, −2.90128267146196816290811823898, −2.04679482981860907882345217602, −0.924228925550788824117409303399, 0.924228925550788824117409303399, 2.04679482981860907882345217602, 2.90128267146196816290811823898, 4.08215586710840068172364753036, 4.33326634946061470771545996094, 5.52811660507401625096378789558, 6.24136212060885537165242559195, 7.12125093890743628595250217126, 8.009275093217193006626557506224, 8.318717440278510192619012802301

Graph of the $Z$-function along the critical line