Properties

Label 2-395163-1.1-c1-0-17
Degree $2$
Conductor $395163$
Sign $-1$
Analytic cond. $3155.39$
Root an. cond. $56.1728$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 2·5-s + 3·7-s − 3·8-s − 2·10-s + 3·11-s − 6·13-s + 3·14-s − 16-s + 5·17-s − 2·19-s + 2·20-s + 3·22-s − 25-s − 6·26-s − 3·28-s + 7·29-s + 5·31-s + 5·32-s + 5·34-s − 6·35-s + 11·37-s − 2·38-s + 6·40-s + 2·41-s + 8·43-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.894·5-s + 1.13·7-s − 1.06·8-s − 0.632·10-s + 0.904·11-s − 1.66·13-s + 0.801·14-s − 1/4·16-s + 1.21·17-s − 0.458·19-s + 0.447·20-s + 0.639·22-s − 1/5·25-s − 1.17·26-s − 0.566·28-s + 1.29·29-s + 0.898·31-s + 0.883·32-s + 0.857·34-s − 1.01·35-s + 1.80·37-s − 0.324·38-s + 0.948·40-s + 0.312·41-s + 1.21·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 395163 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 395163 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(395163\)    =    \(3^{2} \cdot 23^{2} \cdot 83\)
Sign: $-1$
Analytic conductor: \(3155.39\)
Root analytic conductor: \(56.1728\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 395163,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
23 \( 1 \)
83 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 14 T + p T^{2} \) 1.79.o
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.44750489798068, −12.27899456771404, −11.88810873759142, −11.47901807963228, −11.17230171351844, −10.32423666152785, −9.964831627181977, −9.574511065324727, −8.980989365019054, −8.517808141169980, −8.085594570083090, −7.569728376919471, −7.422941974919058, −6.628034601798458, −5.999599652804741, −5.739147389128465, −4.885119890008801, −4.685245073946106, −4.344769813222043, −3.891008573511400, −3.239876345830585, −2.678342069386550, −2.228131591413439, −1.199354323825440, −0.8371893525000941, 0, 0.8371893525000941, 1.199354323825440, 2.228131591413439, 2.678342069386550, 3.239876345830585, 3.891008573511400, 4.344769813222043, 4.685245073946106, 4.885119890008801, 5.739147389128465, 5.999599652804741, 6.628034601798458, 7.422941974919058, 7.569728376919471, 8.085594570083090, 8.517808141169980, 8.980989365019054, 9.574511065324727, 9.964831627181977, 10.32423666152785, 11.17230171351844, 11.47901807963228, 11.88810873759142, 12.27899456771404, 12.44750489798068

Graph of the $Z$-function along the critical line