Properties

Label 2-384678-1.1-c1-0-46
Degree $2$
Conductor $384678$
Sign $-1$
Analytic cond. $3071.66$
Root an. cond. $55.4226$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 7-s + 8-s − 2·10-s + 6·11-s + 3·13-s + 14-s + 16-s + 17-s + 7·19-s − 2·20-s + 6·22-s − 3·23-s − 25-s + 3·26-s + 28-s − 2·29-s + 2·31-s + 32-s + 34-s − 2·35-s − 5·37-s + 7·38-s − 2·40-s + 9·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.377·7-s + 0.353·8-s − 0.632·10-s + 1.80·11-s + 0.832·13-s + 0.267·14-s + 1/4·16-s + 0.242·17-s + 1.60·19-s − 0.447·20-s + 1.27·22-s − 0.625·23-s − 1/5·25-s + 0.588·26-s + 0.188·28-s − 0.371·29-s + 0.359·31-s + 0.176·32-s + 0.171·34-s − 0.338·35-s − 0.821·37-s + 1.13·38-s − 0.316·40-s + 1.40·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384678 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384678 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384678\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 43 \cdot 71\)
Sign: $-1$
Analytic conductor: \(3071.66\)
Root analytic conductor: \(55.4226\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 384678,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
43 \( 1 - T \)
71 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.51523567878017, −12.07908386600918, −11.83108635432265, −11.54899034429968, −11.05869534216453, −10.70517008890514, −9.928896469655176, −9.494157027185138, −9.151862597178882, −8.448585438465351, −8.121108761603392, −7.571811729580651, −7.201405450991060, −6.664125343792507, −6.185138555879781, −5.729471547047896, −5.246301876556544, −4.536584471402620, −4.180075921582136, −3.686918530069052, −3.419728242861041, −2.816805447384747, −1.940486806173969, −1.310487222352136, −1.062494160781820, 0, 1.062494160781820, 1.310487222352136, 1.940486806173969, 2.816805447384747, 3.419728242861041, 3.686918530069052, 4.180075921582136, 4.536584471402620, 5.246301876556544, 5.729471547047896, 6.185138555879781, 6.664125343792507, 7.201405450991060, 7.571811729580651, 8.121108761603392, 8.448585438465351, 9.151862597178882, 9.494157027185138, 9.928896469655176, 10.70517008890514, 11.05869534216453, 11.54899034429968, 11.83108635432265, 12.07908386600918, 12.51523567878017

Graph of the $Z$-function along the critical line