Properties

Label 2-382347-1.1-c1-0-64
Degree $2$
Conductor $382347$
Sign $-1$
Analytic cond. $3053.05$
Root an. cond. $55.2544$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4·13-s + 4·16-s − 2·19-s − 9·23-s − 5·25-s + 9·29-s + 5·31-s − 2·37-s − 43-s + 9·47-s − 8·52-s − 9·59-s − 61-s − 8·64-s + 5·67-s + 9·71-s − 7·73-s + 4·76-s + 10·79-s + 9·89-s + 18·92-s − 97-s + 10·100-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 4-s + 1.10·13-s + 16-s − 0.458·19-s − 1.87·23-s − 25-s + 1.67·29-s + 0.898·31-s − 0.328·37-s − 0.152·43-s + 1.31·47-s − 1.10·52-s − 1.17·59-s − 0.128·61-s − 64-s + 0.610·67-s + 1.06·71-s − 0.819·73-s + 0.458·76-s + 1.12·79-s + 0.953·89-s + 1.87·92-s − 0.101·97-s + 100-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382347 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382347 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382347\)    =    \(3^{3} \cdot 7^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(3053.05\)
Root analytic conductor: \(55.2544\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 382347,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
17 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60563004081645, −12.26182289503336, −11.93626413343974, −11.41569117652543, −10.71814516153446, −10.41423289451848, −9.979551969842487, −9.589726107102383, −8.994110776835787, −8.589157716872438, −8.161614128490898, −7.916001617391737, −7.310705452152226, −6.468254209663803, −6.184161879869926, −5.857746281191817, −5.167286692053511, −4.666174881559257, −4.163400048933194, −3.810493851348530, −3.336344649794849, −2.574639536467593, −1.996097076302685, −1.284626055856103, −0.7135917339532115, 0, 0.7135917339532115, 1.284626055856103, 1.996097076302685, 2.574639536467593, 3.336344649794849, 3.810493851348530, 4.163400048933194, 4.666174881559257, 5.167286692053511, 5.857746281191817, 6.184161879869926, 6.468254209663803, 7.310705452152226, 7.916001617391737, 8.161614128490898, 8.589157716872438, 8.994110776835787, 9.589726107102383, 9.979551969842487, 10.41423289451848, 10.71814516153446, 11.41569117652543, 11.93626413343974, 12.26182289503336, 12.60563004081645

Graph of the $Z$-function along the critical line