Properties

Label 2-381480-1.1-c1-0-18
Degree $2$
Conductor $381480$
Sign $-1$
Analytic cond. $3046.13$
Root an. cond. $55.1917$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 11-s − 5·13-s + 15-s − 7·19-s + 21-s − 23-s + 25-s − 27-s + 8·29-s + 5·31-s + 33-s + 35-s + 7·37-s + 5·39-s − 2·41-s − 8·43-s − 45-s + 2·47-s − 6·49-s − 6·53-s + 55-s + 7·57-s + 5·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.301·11-s − 1.38·13-s + 0.258·15-s − 1.60·19-s + 0.218·21-s − 0.208·23-s + 1/5·25-s − 0.192·27-s + 1.48·29-s + 0.898·31-s + 0.174·33-s + 0.169·35-s + 1.15·37-s + 0.800·39-s − 0.312·41-s − 1.21·43-s − 0.149·45-s + 0.291·47-s − 6/7·49-s − 0.824·53-s + 0.134·55-s + 0.927·57-s + 0.640·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 381480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(381480\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(3046.13\)
Root analytic conductor: \(55.1917\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 381480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56863883272210, −12.28481706942915, −11.86372383525821, −11.41422092230392, −10.81181196734646, −10.53631410556206, −9.933588063043740, −9.751399293085330, −9.158467294638469, −8.434341589705547, −8.138748241406894, −7.753452903627505, −7.077444902707834, −6.530823565607176, −6.472451458413472, −5.794901319700051, −5.038850657391046, −4.785209931603437, −4.359684999823990, −3.801582972892667, −3.058363387828296, −2.602134974990329, −2.114039051429414, −1.314979520817769, −0.5198794689244382, 0, 0.5198794689244382, 1.314979520817769, 2.114039051429414, 2.602134974990329, 3.058363387828296, 3.801582972892667, 4.359684999823990, 4.785209931603437, 5.038850657391046, 5.794901319700051, 6.472451458413472, 6.530823565607176, 7.077444902707834, 7.753452903627505, 8.138748241406894, 8.434341589705547, 9.158467294638469, 9.751399293085330, 9.933588063043740, 10.53631410556206, 10.81181196734646, 11.41422092230392, 11.86372383525821, 12.28481706942915, 12.56863883272210

Graph of the $Z$-function along the critical line