Properties

Label 2-37440-1.1-c1-0-78
Degree $2$
Conductor $37440$
Sign $-1$
Analytic cond. $298.959$
Root an. cond. $17.2904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 4·11-s + 13-s + 4·17-s + 6·19-s + 25-s − 4·29-s − 6·31-s + 2·35-s + 2·37-s − 10·41-s + 8·43-s − 3·49-s − 4·53-s + 4·55-s − 4·59-s − 2·61-s − 65-s + 6·67-s − 8·71-s + 10·73-s + 8·77-s + 4·79-s + 12·83-s − 4·85-s + 2·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 1.20·11-s + 0.277·13-s + 0.970·17-s + 1.37·19-s + 1/5·25-s − 0.742·29-s − 1.07·31-s + 0.338·35-s + 0.328·37-s − 1.56·41-s + 1.21·43-s − 3/7·49-s − 0.549·53-s + 0.539·55-s − 0.520·59-s − 0.256·61-s − 0.124·65-s + 0.733·67-s − 0.949·71-s + 1.17·73-s + 0.911·77-s + 0.450·79-s + 1.31·83-s − 0.433·85-s + 0.211·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 37440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(37440\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(298.959\)
Root analytic conductor: \(17.2904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 37440,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.27624912414912, −14.60322997648782, −14.05486282402423, −13.50435149516213, −13.02505141150116, −12.51919337563641, −12.10219107562391, −11.39816815745281, −10.94569319945051, −10.36311207511576, −9.772559963171565, −9.410378523269572, −8.724737172656726, −7.975103059200035, −7.598947533147457, −7.185389228292257, −6.370466265038035, −5.731812902474915, −5.253911261065782, −4.695843551780921, −3.571281559229351, −3.448467652045257, −2.724177097899569, −1.827474369653490, −0.8588430876592652, 0, 0.8588430876592652, 1.827474369653490, 2.724177097899569, 3.448467652045257, 3.571281559229351, 4.695843551780921, 5.253911261065782, 5.731812902474915, 6.370466265038035, 7.185389228292257, 7.598947533147457, 7.975103059200035, 8.724737172656726, 9.410378523269572, 9.772559963171565, 10.36311207511576, 10.94569319945051, 11.39816815745281, 12.10219107562391, 12.51919337563641, 13.02505141150116, 13.50435149516213, 14.05486282402423, 14.60322997648782, 15.27624912414912

Graph of the $Z$-function along the critical line