Properties

Label 2-366400-1.1-c1-0-15
Degree $2$
Conductor $366400$
Sign $1$
Analytic cond. $2925.71$
Root an. cond. $54.0899$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 2·7-s + 6·9-s − 11-s + 2·13-s − 17-s + 19-s − 6·21-s + 4·23-s − 9·27-s + 2·29-s − 4·31-s + 3·33-s − 6·37-s − 6·39-s − 2·41-s − 5·43-s + 2·47-s − 3·49-s + 3·51-s − 2·53-s − 3·57-s + 7·61-s + 12·63-s − 14·67-s − 12·69-s + 15·71-s + ⋯
L(s)  = 1  − 1.73·3-s + 0.755·7-s + 2·9-s − 0.301·11-s + 0.554·13-s − 0.242·17-s + 0.229·19-s − 1.30·21-s + 0.834·23-s − 1.73·27-s + 0.371·29-s − 0.718·31-s + 0.522·33-s − 0.986·37-s − 0.960·39-s − 0.312·41-s − 0.762·43-s + 0.291·47-s − 3/7·49-s + 0.420·51-s − 0.274·53-s − 0.397·57-s + 0.896·61-s + 1.51·63-s − 1.71·67-s − 1.44·69-s + 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(366400\)    =    \(2^{6} \cdot 5^{2} \cdot 229\)
Sign: $1$
Analytic conductor: \(2925.71\)
Root analytic conductor: \(54.0899\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 366400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.408674940\)
\(L(\frac12)\) \(\approx\) \(1.408674940\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
229 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.19180515144657, −12.13069988872604, −11.52417435534082, −11.10340278210298, −10.87798630105594, −10.44678998546235, −10.00859977716266, −9.393184845936776, −8.916012201236216, −8.334174849206088, −7.875692333275138, −7.326984320797079, −6.761554104011176, −6.572983054998609, −5.913751637502064, −5.414828457461210, −5.090570480745651, −4.738592610055829, −4.155043418374765, −3.547450028844477, −2.971947578627522, −1.987427720516492, −1.641779811353001, −0.9257706040643816, −0.4233302162916470, 0.4233302162916470, 0.9257706040643816, 1.641779811353001, 1.987427720516492, 2.971947578627522, 3.547450028844477, 4.155043418374765, 4.738592610055829, 5.090570480745651, 5.414828457461210, 5.913751637502064, 6.572983054998609, 6.761554104011176, 7.326984320797079, 7.875692333275138, 8.334174849206088, 8.916012201236216, 9.393184845936776, 10.00859977716266, 10.44678998546235, 10.87798630105594, 11.10340278210298, 11.52417435534082, 12.13069988872604, 12.19180515144657

Graph of the $Z$-function along the critical line