Properties

Label 2-36300-1.1-c1-0-11
Degree $2$
Conductor $36300$
Sign $1$
Analytic cond. $289.856$
Root an. cond. $17.0251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 4·13-s + 8·19-s + 4·23-s − 27-s − 2·29-s + 4·31-s + 8·37-s + 4·39-s + 2·41-s − 4·47-s − 7·49-s + 12·53-s − 8·57-s − 12·59-s − 2·61-s + 12·67-s − 4·69-s + 12·73-s − 12·79-s + 81-s + 8·83-s + 2·87-s + 6·89-s − 4·93-s + 101-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.10·13-s + 1.83·19-s + 0.834·23-s − 0.192·27-s − 0.371·29-s + 0.718·31-s + 1.31·37-s + 0.640·39-s + 0.312·41-s − 0.583·47-s − 49-s + 1.64·53-s − 1.05·57-s − 1.56·59-s − 0.256·61-s + 1.46·67-s − 0.481·69-s + 1.40·73-s − 1.35·79-s + 1/9·81-s + 0.878·83-s + 0.214·87-s + 0.635·89-s − 0.414·93-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(289.856\)
Root analytic conductor: \(17.0251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 36300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.861520441\)
\(L(\frac12)\) \(\approx\) \(1.861520441\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.97129685884239, −14.37413684851092, −13.87678666248229, −13.27285424210355, −12.77118976526751, −12.21702590507688, −11.71661646452827, −11.31945159019748, −10.76250939134437, −10.00924892750134, −9.635687120880673, −9.258391827312215, −8.401888435049177, −7.650263275025735, −7.415900980954077, −6.717407703037647, −6.126023347327047, −5.408431334802852, −4.979645611725095, −4.473573615243753, −3.566864337826248, −2.936859396325811, −2.244519399300978, −1.239443493403258, −0.5812589388576235, 0.5812589388576235, 1.239443493403258, 2.244519399300978, 2.936859396325811, 3.566864337826248, 4.473573615243753, 4.979645611725095, 5.408431334802852, 6.126023347327047, 6.717407703037647, 7.415900980954077, 7.650263275025735, 8.401888435049177, 9.258391827312215, 9.635687120880673, 10.00924892750134, 10.76250939134437, 11.31945159019748, 11.71661646452827, 12.21702590507688, 12.77118976526751, 13.27285424210355, 13.87678666248229, 14.37413684851092, 14.97129685884239

Graph of the $Z$-function along the critical line