Properties

Label 2-35904-1.1-c1-0-12
Degree $2$
Conductor $35904$
Sign $1$
Analytic cond. $286.694$
Root an. cond. $16.9320$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 3·7-s + 9-s − 11-s − 2·13-s + 2·15-s − 17-s − 2·19-s − 3·21-s + 2·23-s − 25-s + 27-s − 9·29-s + 8·31-s − 33-s − 6·35-s + 12·37-s − 2·39-s − 3·41-s + 2·45-s + 5·47-s + 2·49-s − 51-s − 11·53-s − 2·55-s − 2·57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 1.13·7-s + 1/3·9-s − 0.301·11-s − 0.554·13-s + 0.516·15-s − 0.242·17-s − 0.458·19-s − 0.654·21-s + 0.417·23-s − 1/5·25-s + 0.192·27-s − 1.67·29-s + 1.43·31-s − 0.174·33-s − 1.01·35-s + 1.97·37-s − 0.320·39-s − 0.468·41-s + 0.298·45-s + 0.729·47-s + 2/7·49-s − 0.140·51-s − 1.51·53-s − 0.269·55-s − 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35904\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(286.694\)
Root analytic conductor: \(16.9320\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35904,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.159964981\)
\(L(\frac12)\) \(\approx\) \(2.159964981\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94656756778478, −14.35869850338854, −13.77630552754563, −13.33534465721852, −12.79699264097657, −12.73478228168091, −11.72336678735815, −11.26149891873842, −10.37840370508940, −10.09825235118647, −9.506429521642068, −9.220063184594796, −8.622587269367510, −7.741507415867699, −7.463016771187249, −6.605413468146045, −6.147502514706394, −5.743112303619464, −4.799559535008497, −4.321923958818811, −3.420468269998941, −2.881382152528596, −2.305358835608659, −1.636275705155158, −0.5024622316025042, 0.5024622316025042, 1.636275705155158, 2.305358835608659, 2.881382152528596, 3.420468269998941, 4.321923958818811, 4.799559535008497, 5.743112303619464, 6.147502514706394, 6.605413468146045, 7.463016771187249, 7.741507415867699, 8.622587269367510, 9.220063184594796, 9.506429521642068, 10.09825235118647, 10.37840370508940, 11.26149891873842, 11.72336678735815, 12.73478228168091, 12.79699264097657, 13.33534465721852, 13.77630552754563, 14.35869850338854, 14.94656756778478

Graph of the $Z$-function along the critical line