Properties

Label 2-356928-1.1-c1-0-74
Degree $2$
Conductor $356928$
Sign $-1$
Analytic cond. $2850.08$
Root an. cond. $53.3861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s + 7-s + 9-s + 11-s + 3·15-s − 8·17-s + 6·19-s − 21-s + 23-s + 4·25-s − 27-s − 29-s − 33-s − 3·35-s + 6·37-s + 11·41-s − 11·43-s − 3·45-s − 12·47-s − 6·49-s + 8·51-s − 2·53-s − 3·55-s − 6·57-s − 7·59-s − 11·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s + 0.377·7-s + 1/3·9-s + 0.301·11-s + 0.774·15-s − 1.94·17-s + 1.37·19-s − 0.218·21-s + 0.208·23-s + 4/5·25-s − 0.192·27-s − 0.185·29-s − 0.174·33-s − 0.507·35-s + 0.986·37-s + 1.71·41-s − 1.67·43-s − 0.447·45-s − 1.75·47-s − 6/7·49-s + 1.12·51-s − 0.274·53-s − 0.404·55-s − 0.794·57-s − 0.911·59-s − 1.40·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(356928\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2850.08\)
Root analytic conductor: \(53.3861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 356928,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 + 11 T + p T^{2} \) 1.43.l
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.73334179301885, −12.01288189408761, −11.90251834003088, −11.28816990192677, −11.09656692330572, −10.86750407742445, −10.04246988485956, −9.419078359902378, −9.305068752317921, −8.500969806964064, −8.122416277547421, −7.759863937402264, −7.103618085471731, −6.944942011583758, −6.226299124613383, −5.883320584131426, −5.076145988638630, −4.601436790306398, −4.447753639586938, −3.822462649700727, −3.166850707538627, −2.808234813663747, −1.823627640266093, −1.404998245253311, −0.5562971271208447, 0, 0.5562971271208447, 1.404998245253311, 1.823627640266093, 2.808234813663747, 3.166850707538627, 3.822462649700727, 4.447753639586938, 4.601436790306398, 5.076145988638630, 5.883320584131426, 6.226299124613383, 6.944942011583758, 7.103618085471731, 7.759863937402264, 8.122416277547421, 8.500969806964064, 9.305068752317921, 9.419078359902378, 10.04246988485956, 10.86750407742445, 11.09656692330572, 11.28816990192677, 11.90251834003088, 12.01288189408761, 12.73334179301885

Graph of the $Z$-function along the critical line