Properties

Label 2-356928-1.1-c1-0-13
Degree $2$
Conductor $356928$
Sign $1$
Analytic cond. $2850.08$
Root an. cond. $53.3861$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 7-s + 9-s − 11-s + 3·15-s + 7·17-s − 6·19-s + 21-s + 4·23-s + 4·25-s − 27-s − 10·29-s + 33-s + 3·35-s + 6·37-s + 41-s + 10·43-s − 3·45-s + 3·47-s − 6·49-s − 7·51-s − 11·53-s + 3·55-s + 6·57-s − 8·59-s − 2·61-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.774·15-s + 1.69·17-s − 1.37·19-s + 0.218·21-s + 0.834·23-s + 4/5·25-s − 0.192·27-s − 1.85·29-s + 0.174·33-s + 0.507·35-s + 0.986·37-s + 0.156·41-s + 1.52·43-s − 0.447·45-s + 0.437·47-s − 6/7·49-s − 0.980·51-s − 1.51·53-s + 0.404·55-s + 0.794·57-s − 1.04·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 356928 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(356928\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2850.08\)
Root analytic conductor: \(53.3861\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 356928,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4858855253\)
\(L(\frac12)\) \(\approx\) \(0.4858855253\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + T + p T^{2} \) 1.7.b
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46282494761943, −12.31654981034299, −11.41591771851334, −11.22464473952646, −10.90345323958490, −10.44997656068342, −9.703570009236992, −9.465032611850517, −8.957749278133586, −8.136226745171856, −7.886380654699420, −7.631929380756413, −7.002581668140537, −6.522659264448729, −6.037213944711560, −5.436803128600882, −5.109804357081736, −4.392966895084564, −3.934679040967776, −3.633183508486786, −2.966324176596660, −2.437340139597529, −1.556937304803013, −0.9397861186615023, −0.2284767417233003, 0.2284767417233003, 0.9397861186615023, 1.556937304803013, 2.437340139597529, 2.966324176596660, 3.633183508486786, 3.934679040967776, 4.392966895084564, 5.109804357081736, 5.436803128600882, 6.037213944711560, 6.522659264448729, 7.002581668140537, 7.631929380756413, 7.886380654699420, 8.136226745171856, 8.957749278133586, 9.465032611850517, 9.703570009236992, 10.44997656068342, 10.90345323958490, 11.22464473952646, 11.41591771851334, 12.31654981034299, 12.46282494761943

Graph of the $Z$-function along the critical line