Properties

Label 2-35550-1.1-c1-0-56
Degree $2$
Conductor $35550$
Sign $1$
Analytic cond. $283.868$
Root an. cond. $16.8483$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s + 2·11-s − 7·13-s + 2·14-s + 16-s − 4·17-s + 19-s − 2·22-s + 2·23-s + 7·26-s − 2·28-s − 4·29-s − 4·31-s − 32-s + 4·34-s − 4·37-s − 38-s − 5·41-s − 7·43-s + 2·44-s − 2·46-s − 47-s − 3·49-s − 7·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s + 0.603·11-s − 1.94·13-s + 0.534·14-s + 1/4·16-s − 0.970·17-s + 0.229·19-s − 0.426·22-s + 0.417·23-s + 1.37·26-s − 0.377·28-s − 0.742·29-s − 0.718·31-s − 0.176·32-s + 0.685·34-s − 0.657·37-s − 0.162·38-s − 0.780·41-s − 1.06·43-s + 0.301·44-s − 0.294·46-s − 0.145·47-s − 3/7·49-s − 0.970·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(283.868\)
Root analytic conductor: \(16.8483\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 35550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
79 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 9 T + p T^{2} \) 1.61.j
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 2 T + p T^{2} \) 1.73.c
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.45578556418624, −14.83327532644943, −14.74943147270051, −13.83986850116218, −13.35025810224081, −12.66985723389767, −12.28946874198227, −11.76843042985892, −11.17739561091386, −10.63086446661452, −9.935002758181464, −9.621973752410842, −9.106052391130303, −8.680715683621508, −7.774315300082138, −7.364163004905401, −6.796330472257348, −6.408925171108669, −5.603738273245040, −4.883909598994602, −4.375585905342237, −3.321875588092629, −2.982674878719580, −2.044094507650111, −1.515490889024060, 0, 0, 1.515490889024060, 2.044094507650111, 2.982674878719580, 3.321875588092629, 4.375585905342237, 4.883909598994602, 5.603738273245040, 6.408925171108669, 6.796330472257348, 7.364163004905401, 7.774315300082138, 8.680715683621508, 9.106052391130303, 9.621973752410842, 9.935002758181464, 10.63086446661452, 11.17739561091386, 11.76843042985892, 12.28946874198227, 12.66985723389767, 13.35025810224081, 13.83986850116218, 14.74943147270051, 14.83327532644943, 15.45578556418624

Graph of the $Z$-function along the critical line