Properties

Label 2-350350-1.1-c1-0-104
Degree $2$
Conductor $350350$
Sign $-1$
Analytic cond. $2797.55$
Root an. cond. $52.8919$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s − 2·9-s − 11-s − 12-s + 13-s + 16-s − 5·17-s + 2·18-s + 3·19-s + 22-s + 4·23-s + 24-s − 26-s + 5·27-s + 29-s + 3·31-s − 32-s + 33-s + 5·34-s − 2·36-s + 9·37-s − 3·38-s − 39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s − 2/3·9-s − 0.301·11-s − 0.288·12-s + 0.277·13-s + 1/4·16-s − 1.21·17-s + 0.471·18-s + 0.688·19-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 0.196·26-s + 0.962·27-s + 0.185·29-s + 0.538·31-s − 0.176·32-s + 0.174·33-s + 0.857·34-s − 1/3·36-s + 1.47·37-s − 0.486·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350350\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(2797.55\)
Root analytic conductor: \(52.8919\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 350350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.76375788626197, −12.15096711971293, −11.62004195519422, −11.44106453417209, −10.87913989864108, −10.72205090229087, −10.01702417510052, −9.579175000174931, −9.155761402350677, −8.677992751504299, −8.095461233030484, −8.012671356366970, −7.067085257333190, −6.838681954687887, −6.353123090840385, −5.841496017334461, −5.325273000863071, −4.914602028072284, −4.311076382501057, −3.667103927432582, −2.968473186515235, −2.587875157915693, −2.038385346279020, −1.138859900934819, −0.7212055366100621, 0, 0.7212055366100621, 1.138859900934819, 2.038385346279020, 2.587875157915693, 2.968473186515235, 3.667103927432582, 4.311076382501057, 4.914602028072284, 5.325273000863071, 5.841496017334461, 6.353123090840385, 6.838681954687887, 7.067085257333190, 8.012671356366970, 8.095461233030484, 8.677992751504299, 9.155761402350677, 9.579175000174931, 10.01702417510052, 10.72205090229087, 10.87913989864108, 11.44106453417209, 11.62004195519422, 12.15096711971293, 12.76375788626197

Graph of the $Z$-function along the critical line