Properties

Label 2-34848-1.1-c1-0-5
Degree $2$
Conductor $34848$
Sign $1$
Analytic cond. $278.262$
Root an. cond. $16.6812$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 4·13-s + 2·17-s + 11·25-s + 10·29-s − 2·37-s − 10·41-s − 7·49-s − 4·53-s − 12·61-s + 16·65-s + 16·73-s − 8·85-s + 16·89-s + 18·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.10·13-s + 0.485·17-s + 11/5·25-s + 1.85·29-s − 0.328·37-s − 1.56·41-s − 49-s − 0.549·53-s − 1.53·61-s + 1.98·65-s + 1.87·73-s − 0.867·85-s + 1.69·89-s + 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34848 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34848\)    =    \(2^{5} \cdot 3^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(278.262\)
Root analytic conductor: \(16.6812\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 34848,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7617575312\)
\(L(\frac12)\) \(\approx\) \(0.7617575312\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01942456830758, −14.53451503659997, −14.04877280805166, −13.36467552900695, −12.57480937606455, −12.24727906640895, −11.85063716680791, −11.46630883319120, −10.62759490683768, −10.36375213262470, −9.595826604153251, −8.974632179092060, −8.282319678384380, −7.914509545981503, −7.506553539498574, −6.740974170243103, −6.455708048232870, −5.274769197113624, −4.806413261328658, −4.394302923097009, −3.486510017791731, −3.189911359950677, −2.353866425433327, −1.255617976578253, −0.3524642558590171, 0.3524642558590171, 1.255617976578253, 2.353866425433327, 3.189911359950677, 3.486510017791731, 4.394302923097009, 4.806413261328658, 5.274769197113624, 6.455708048232870, 6.740974170243103, 7.506553539498574, 7.914509545981503, 8.282319678384380, 8.974632179092060, 9.595826604153251, 10.36375213262470, 10.62759490683768, 11.46630883319120, 11.85063716680791, 12.24727906640895, 12.57480937606455, 13.36467552900695, 14.04877280805166, 14.53451503659997, 15.01942456830758

Graph of the $Z$-function along the critical line