Properties

Label 2-34680-1.1-c1-0-49
Degree $2$
Conductor $34680$
Sign $-1$
Analytic cond. $276.921$
Root an. cond. $16.6409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 3·7-s + 9-s − 3·11-s + 4·13-s + 15-s − 5·19-s + 3·21-s + 25-s + 27-s + 5·29-s − 4·31-s − 3·33-s + 3·35-s − 9·37-s + 4·39-s − 7·41-s − 8·43-s + 45-s − 3·47-s + 2·49-s − 7·53-s − 3·55-s − 5·57-s + 6·59-s + 4·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.13·7-s + 1/3·9-s − 0.904·11-s + 1.10·13-s + 0.258·15-s − 1.14·19-s + 0.654·21-s + 1/5·25-s + 0.192·27-s + 0.928·29-s − 0.718·31-s − 0.522·33-s + 0.507·35-s − 1.47·37-s + 0.640·39-s − 1.09·41-s − 1.21·43-s + 0.149·45-s − 0.437·47-s + 2/7·49-s − 0.961·53-s − 0.404·55-s − 0.662·57-s + 0.781·59-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34680\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(276.921\)
Root analytic conductor: \(16.6409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
17 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 7 T + p T^{2} \) 1.53.h
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.20670034699089, −14.62539626071058, −14.16438747600950, −13.72206336585343, −13.12472007870463, −12.84914832612636, −12.05168506655038, −11.46401648758191, −10.89323120028942, −10.40694595227592, −10.08161355241318, −9.167576781333121, −8.611610936741414, −8.287598669754150, −7.891732507822760, −7.005208258006618, −6.544695556444983, −5.820852716008078, −5.044122671008646, −4.804912600215546, −3.870347300986516, −3.314970686439374, −2.473700232795512, −1.804876944826453, −1.341224404838063, 0, 1.341224404838063, 1.804876944826453, 2.473700232795512, 3.314970686439374, 3.870347300986516, 4.804912600215546, 5.044122671008646, 5.820852716008078, 6.544695556444983, 7.005208258006618, 7.891732507822760, 8.287598669754150, 8.611610936741414, 9.167576781333121, 10.08161355241318, 10.40694595227592, 10.89323120028942, 11.46401648758191, 12.05168506655038, 12.84914832612636, 13.12472007870463, 13.72206336585343, 14.16438747600950, 14.62539626071058, 15.20670034699089

Graph of the $Z$-function along the critical line