Properties

Label 2-346560-1.1-c1-0-115
Degree $2$
Conductor $346560$
Sign $1$
Analytic cond. $2767.29$
Root an. cond. $52.6050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s + 6·11-s − 4·13-s − 15-s − 6·17-s + 2·21-s + 25-s − 27-s + 8·31-s − 6·33-s − 2·35-s + 8·37-s + 4·39-s + 12·41-s + 2·43-s + 45-s − 3·49-s + 6·51-s − 6·53-s + 6·55-s + 12·59-s − 2·61-s − 2·63-s − 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 1.80·11-s − 1.10·13-s − 0.258·15-s − 1.45·17-s + 0.436·21-s + 1/5·25-s − 0.192·27-s + 1.43·31-s − 1.04·33-s − 0.338·35-s + 1.31·37-s + 0.640·39-s + 1.87·41-s + 0.304·43-s + 0.149·45-s − 3/7·49-s + 0.840·51-s − 0.824·53-s + 0.809·55-s + 1.56·59-s − 0.256·61-s − 0.251·63-s − 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(346560\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2767.29\)
Root analytic conductor: \(52.6050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 346560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.670398194\)
\(L(\frac12)\) \(\approx\) \(2.670398194\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
19 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55023247399586, −12.06992062644264, −11.70515068126073, −11.16134198616269, −10.91995180267112, −10.20033955473419, −9.676105678981680, −9.410426187873679, −9.250893951512277, −8.428086167342097, −8.048845570702951, −7.190187081288552, −6.887107855283970, −6.547195927926309, −6.040387638848915, −5.784233927642569, −4.903017097544579, −4.433808857616885, −4.224197765331915, −3.503888547449088, −2.798904346021003, −2.313745447186618, −1.772201695851290, −0.8713083619748061, −0.5624118406021990, 0.5624118406021990, 0.8713083619748061, 1.772201695851290, 2.313745447186618, 2.798904346021003, 3.503888547449088, 4.224197765331915, 4.433808857616885, 4.903017097544579, 5.784233927642569, 6.040387638848915, 6.547195927926309, 6.887107855283970, 7.190187081288552, 8.048845570702951, 8.428086167342097, 9.250893951512277, 9.410426187873679, 9.676105678981680, 10.20033955473419, 10.91995180267112, 11.16134198616269, 11.70515068126073, 12.06992062644264, 12.55023247399586

Graph of the $Z$-function along the critical line