Properties

Label 2-34496-1.1-c1-0-54
Degree $2$
Conductor $34496$
Sign $-1$
Analytic cond. $275.451$
Root an. cond. $16.5967$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s − 2·9-s − 11-s + 6·13-s − 3·15-s − 6·19-s − 3·23-s + 4·25-s − 5·27-s + 3·31-s − 33-s + 37-s + 6·39-s + 10·41-s + 2·43-s + 6·45-s − 12·47-s + 6·53-s + 3·55-s − 6·57-s + 11·59-s + 4·61-s − 18·65-s − 7·67-s − 3·69-s − 13·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s − 2/3·9-s − 0.301·11-s + 1.66·13-s − 0.774·15-s − 1.37·19-s − 0.625·23-s + 4/5·25-s − 0.962·27-s + 0.538·31-s − 0.174·33-s + 0.164·37-s + 0.960·39-s + 1.56·41-s + 0.304·43-s + 0.894·45-s − 1.75·47-s + 0.824·53-s + 0.404·55-s − 0.794·57-s + 1.43·59-s + 0.512·61-s − 2.23·65-s − 0.855·67-s − 0.361·69-s − 1.54·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34496\)    =    \(2^{6} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(275.451\)
Root analytic conductor: \(16.5967\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34496,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 17 T + p T^{2} \) 1.89.ar
97 \( 1 - 15 T + p T^{2} \) 1.97.ap
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.25627135898628, −14.69478397566329, −14.32089030750765, −13.67009315778345, −12.96954359131454, −12.88201345975397, −11.75813823643846, −11.68409900137520, −11.02893380667561, −10.60517142528494, −9.943389631502168, −9.012312063169212, −8.710659378702441, −8.133370868458757, −7.940439428327295, −7.206661083049951, −6.333071158183261, −6.057967195069672, −5.205068726757196, −4.277698732403842, −3.963140408238883, −3.397000934614680, −2.698477485225984, −1.961583805015527, −0.8779389424760439, 0, 0.8779389424760439, 1.961583805015527, 2.698477485225984, 3.397000934614680, 3.963140408238883, 4.277698732403842, 5.205068726757196, 6.057967195069672, 6.333071158183261, 7.206661083049951, 7.940439428327295, 8.133370868458757, 8.710659378702441, 9.012312063169212, 9.943389631502168, 10.60517142528494, 11.02893380667561, 11.68409900137520, 11.75813823643846, 12.88201345975397, 12.96954359131454, 13.67009315778345, 14.32089030750765, 14.69478397566329, 15.25627135898628

Graph of the $Z$-function along the critical line