Properties

Label 2-339864-1.1-c1-0-79
Degree $2$
Conductor $339864$
Sign $-1$
Analytic cond. $2713.82$
Root an. cond. $52.0944$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s + 9-s + 3·11-s − 2·13-s + 3·15-s + 2·19-s + 4·23-s + 4·25-s + 27-s − 3·29-s − 3·31-s + 3·33-s − 6·37-s − 2·39-s − 4·41-s + 10·43-s + 3·45-s − 8·47-s − 5·53-s + 9·55-s + 2·57-s + 13·59-s − 6·65-s − 8·67-s + 4·69-s − 10·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s + 1/3·9-s + 0.904·11-s − 0.554·13-s + 0.774·15-s + 0.458·19-s + 0.834·23-s + 4/5·25-s + 0.192·27-s − 0.557·29-s − 0.538·31-s + 0.522·33-s − 0.986·37-s − 0.320·39-s − 0.624·41-s + 1.52·43-s + 0.447·45-s − 1.16·47-s − 0.686·53-s + 1.21·55-s + 0.264·57-s + 1.69·59-s − 0.744·65-s − 0.977·67-s + 0.481·69-s − 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 339864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 339864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(339864\)    =    \(2^{3} \cdot 3 \cdot 7^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2713.82\)
Root analytic conductor: \(52.0944\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 339864,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
17 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87074671844250, −12.40451957856036, −12.00919275040667, −11.40157987141663, −10.93380439326280, −10.44057612621626, −9.921634929009238, −9.542963550688387, −9.256561201495591, −8.824970286343757, −8.359590385056389, −7.664394150444019, −7.228140415750641, −6.733059177156759, −6.421675579204317, −5.609613299824795, −5.449992926065423, −4.845333505598560, −4.192188118115492, −3.716292003207429, −3.009577258795239, −2.684665434357500, −1.912938115063973, −1.593649108719969, −1.026172650148367, 0, 1.026172650148367, 1.593649108719969, 1.912938115063973, 2.684665434357500, 3.009577258795239, 3.716292003207429, 4.192188118115492, 4.845333505598560, 5.449992926065423, 5.609613299824795, 6.421675579204317, 6.733059177156759, 7.228140415750641, 7.664394150444019, 8.359590385056389, 8.824970286343757, 9.256561201495591, 9.542963550688387, 9.921634929009238, 10.44057612621626, 10.93380439326280, 11.40157987141663, 12.00919275040667, 12.40451957856036, 12.87074671844250

Graph of the $Z$-function along the critical line