Properties

Label 2-3300-1.1-c1-0-10
Degree $2$
Conductor $3300$
Sign $1$
Analytic cond. $26.3506$
Root an. cond. $5.13328$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 11-s − 4·13-s + 3·17-s + 5·19-s − 21-s + 3·23-s + 27-s − 6·29-s + 8·31-s − 33-s − 7·37-s − 4·39-s + 9·41-s + 8·43-s − 3·47-s − 6·49-s + 3·51-s + 6·53-s + 5·57-s + 3·59-s + 14·61-s − 63-s + 2·67-s + 3·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s + 0.727·17-s + 1.14·19-s − 0.218·21-s + 0.625·23-s + 0.192·27-s − 1.11·29-s + 1.43·31-s − 0.174·33-s − 1.15·37-s − 0.640·39-s + 1.40·41-s + 1.21·43-s − 0.437·47-s − 6/7·49-s + 0.420·51-s + 0.824·53-s + 0.662·57-s + 0.390·59-s + 1.79·61-s − 0.125·63-s + 0.244·67-s + 0.361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(26.3506\)
Root analytic conductor: \(5.13328\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.153881380\)
\(L(\frac12)\) \(\approx\) \(2.153881380\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.696143167997132278850002282763, −7.65483689365950253173228694258, −7.45271645794781968966571895593, −6.49005999941517119332358636278, −5.48077983091559049805038341357, −4.87166627193647095530866849012, −3.78274651895588828002510294819, −3.00933788925534646274507562145, −2.23498748075493272086475758078, −0.855913662863658945601921871321, 0.855913662863658945601921871321, 2.23498748075493272086475758078, 3.00933788925534646274507562145, 3.78274651895588828002510294819, 4.87166627193647095530866849012, 5.48077983091559049805038341357, 6.49005999941517119332358636278, 7.45271645794781968966571895593, 7.65483689365950253173228694258, 8.696143167997132278850002282763

Graph of the $Z$-function along the critical line