Properties

Label 2-572e2-1.1-c1-0-50
Degree $2$
Conductor $327184$
Sign $-1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s − 2·9-s − 3·17-s + 4·19-s + 2·21-s + 9·23-s − 5·25-s + 5·27-s − 3·29-s − 4·31-s + 4·37-s − 6·41-s − 43-s − 3·49-s + 3·51-s + 9·53-s − 4·57-s + 6·59-s − 5·61-s + 4·63-s + 2·67-s − 9·69-s − 12·71-s − 10·73-s + 5·75-s − 13·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s − 2/3·9-s − 0.727·17-s + 0.917·19-s + 0.436·21-s + 1.87·23-s − 25-s + 0.962·27-s − 0.557·29-s − 0.718·31-s + 0.657·37-s − 0.937·41-s − 0.152·43-s − 3/7·49-s + 0.420·51-s + 1.23·53-s − 0.529·57-s + 0.781·59-s − 0.640·61-s + 0.503·63-s + 0.244·67-s − 1.08·69-s − 1.42·71-s − 1.17·73-s + 0.577·75-s − 1.46·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92928498750775, −12.35620719925236, −11.76226244229817, −11.43922619077654, −11.23127435678162, −10.56252264065255, −10.16216031612184, −9.624006598347088, −9.213759393919021, −8.695258747606854, −8.454208897753328, −7.531446896861810, −7.255245155499225, −6.802101285029080, −6.252929888107900, −5.723168580948424, −5.466669508257472, −4.871968003146089, −4.332913653395098, −3.694338030473786, −3.025566385982801, −2.893646021981374, −2.020144821067413, −1.350882945318462, −0.5911302968396182, 0, 0.5911302968396182, 1.350882945318462, 2.020144821067413, 2.893646021981374, 3.025566385982801, 3.694338030473786, 4.332913653395098, 4.871968003146089, 5.466669508257472, 5.723168580948424, 6.252929888107900, 6.802101285029080, 7.255245155499225, 7.531446896861810, 8.454208897753328, 8.695258747606854, 9.213759393919021, 9.624006598347088, 10.16216031612184, 10.56252264065255, 11.23127435678162, 11.43922619077654, 11.76226244229817, 12.35620719925236, 12.92928498750775

Graph of the $Z$-function along the critical line