Properties

Label 2-32244-1.1-c1-0-1
Degree $2$
Conductor $32244$
Sign $-1$
Analytic cond. $257.469$
Root an. cond. $16.0458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 3·7-s + 9-s + 13-s − 2·15-s − 2·17-s − 7·19-s − 3·21-s − 23-s − 25-s − 27-s + 4·29-s + 6·35-s − 2·37-s − 39-s + 4·43-s + 2·45-s − 12·47-s + 2·49-s + 2·51-s + 2·53-s + 7·57-s − 5·59-s − 5·61-s + 3·63-s + 2·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 1.13·7-s + 1/3·9-s + 0.277·13-s − 0.516·15-s − 0.485·17-s − 1.60·19-s − 0.654·21-s − 0.208·23-s − 1/5·25-s − 0.192·27-s + 0.742·29-s + 1.01·35-s − 0.328·37-s − 0.160·39-s + 0.609·43-s + 0.298·45-s − 1.75·47-s + 2/7·49-s + 0.280·51-s + 0.274·53-s + 0.927·57-s − 0.650·59-s − 0.640·61-s + 0.377·63-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32244 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32244 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32244\)    =    \(2^{2} \cdot 3 \cdot 2687\)
Sign: $-1$
Analytic conductor: \(257.469\)
Root analytic conductor: \(16.0458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 32244,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
2687 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.21596531283638, −14.82487298807830, −14.19158277293891, −13.76274806608148, −13.22831123006742, −12.66169847189678, −12.16272400990056, −11.45583315092213, −11.07495249670442, −10.54834788224874, −10.11636250718987, −9.429693177041068, −8.797820638088538, −8.288069930174517, −7.763052665271474, −6.958411513332782, −6.254034950556637, −6.090252793241145, −5.211471423267503, −4.719080617294663, −4.252255222269746, −3.353433938305424, −2.249133979429907, −1.916712320455758, −1.143029802763313, 0, 1.143029802763313, 1.916712320455758, 2.249133979429907, 3.353433938305424, 4.252255222269746, 4.719080617294663, 5.211471423267503, 6.090252793241145, 6.254034950556637, 6.958411513332782, 7.763052665271474, 8.288069930174517, 8.797820638088538, 9.429693177041068, 10.11636250718987, 10.54834788224874, 11.07495249670442, 11.45583315092213, 12.16272400990056, 12.66169847189678, 13.22831123006742, 13.76274806608148, 14.19158277293891, 14.82487298807830, 15.21596531283638

Graph of the $Z$-function along the critical line