Properties

Label 2-305760-1.1-c1-0-107
Degree $2$
Conductor $305760$
Sign $-1$
Analytic cond. $2441.50$
Root an. cond. $49.4115$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 6·11-s + 13-s + 15-s + 3·17-s + 7·19-s + 4·23-s + 25-s − 27-s + 2·29-s − 4·31-s + 6·33-s − 4·37-s − 39-s + 5·41-s + 43-s − 45-s − 2·47-s − 3·51-s − 2·53-s + 6·55-s − 7·57-s + 2·59-s − 65-s + 6·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.80·11-s + 0.277·13-s + 0.258·15-s + 0.727·17-s + 1.60·19-s + 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s − 0.718·31-s + 1.04·33-s − 0.657·37-s − 0.160·39-s + 0.780·41-s + 0.152·43-s − 0.149·45-s − 0.291·47-s − 0.420·51-s − 0.274·53-s + 0.809·55-s − 0.927·57-s + 0.260·59-s − 0.124·65-s + 0.733·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 305760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 305760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(305760\)    =    \(2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(2441.50\)
Root analytic conductor: \(49.4115\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 305760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74596101027111, −12.57781681733339, −11.92093037316776, −11.46352776103125, −11.16095194409991, −10.62037362314326, −10.19316863153156, −9.893470026149412, −9.226538556619146, −8.755469536693190, −8.147074308702770, −7.728635890938011, −7.268584689538897, −7.104416824948064, −6.190919998885114, −5.738489878514160, −5.289942671634653, −4.977735199968196, −4.451507583989870, −3.665890240777870, −3.168273152742191, −2.824756938707216, −2.047598828484070, −1.251727079061526, −0.7212324801485619, 0, 0.7212324801485619, 1.251727079061526, 2.047598828484070, 2.824756938707216, 3.168273152742191, 3.665890240777870, 4.451507583989870, 4.977735199968196, 5.289942671634653, 5.738489878514160, 6.190919998885114, 7.104416824948064, 7.268584689538897, 7.728635890938011, 8.147074308702770, 8.755469536693190, 9.226538556619146, 9.893470026149412, 10.19316863153156, 10.62037362314326, 11.16095194409991, 11.46352776103125, 11.92093037316776, 12.57781681733339, 12.74596101027111

Graph of the $Z$-function along the critical line