Properties

Label 2-302400-1.1-c1-0-60
Degree $2$
Conductor $302400$
Sign $1$
Analytic cond. $2414.67$
Root an. cond. $49.1393$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 4·11-s − 13-s − 17-s − 5·19-s + 4·23-s + 3·29-s − 8·31-s − 4·37-s + 2·41-s + 7·47-s + 49-s + 9·53-s − 10·59-s − 13·61-s + 6·67-s + 8·71-s − 2·73-s − 4·77-s − 3·79-s + 12·83-s + 11·89-s − 91-s + 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.377·7-s − 1.20·11-s − 0.277·13-s − 0.242·17-s − 1.14·19-s + 0.834·23-s + 0.557·29-s − 1.43·31-s − 0.657·37-s + 0.312·41-s + 1.02·47-s + 1/7·49-s + 1.23·53-s − 1.30·59-s − 1.66·61-s + 0.733·67-s + 0.949·71-s − 0.234·73-s − 0.455·77-s − 0.337·79-s + 1.31·83-s + 1.16·89-s − 0.104·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 302400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 302400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(302400\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(2414.67\)
Root analytic conductor: \(49.1393\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 302400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.300244194\)
\(L(\frac12)\) \(\approx\) \(1.300244194\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 11 T + p T^{2} \) 1.89.al
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75698490388612, −12.21672402463520, −11.89800893790694, −11.08119749940037, −10.81774952235419, −10.55897842203331, −10.06891306710860, −9.350541911540839, −8.967659171355189, −8.575634014605602, −8.037639634056223, −7.443014863876798, −7.313525520102144, −6.554452553963216, −6.105143838712786, −5.510858481897586, −5.037530013544819, −4.683893323777897, −4.081404300733649, −3.466943270592998, −2.892286699942497, −2.240051004749834, −1.973527929355364, −1.066741998736456, −0.3192894610442933, 0.3192894610442933, 1.066741998736456, 1.973527929355364, 2.240051004749834, 2.892286699942497, 3.466943270592998, 4.081404300733649, 4.683893323777897, 5.037530013544819, 5.510858481897586, 6.105143838712786, 6.554452553963216, 7.313525520102144, 7.443014863876798, 8.037639634056223, 8.575634014605602, 8.967659171355189, 9.350541911540839, 10.06891306710860, 10.55897842203331, 10.81774952235419, 11.08119749940037, 11.89800893790694, 12.21672402463520, 12.75698490388612

Graph of the $Z$-function along the critical line