Properties

Label 2-302400-1.1-c1-0-323
Degree $2$
Conductor $302400$
Sign $-1$
Analytic cond. $2414.67$
Root an. cond. $49.1393$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 4·11-s − 13-s + 17-s + 5·19-s + 4·23-s − 3·29-s + 8·31-s − 4·37-s − 2·41-s + 7·47-s + 49-s − 9·53-s − 10·59-s − 13·61-s − 6·67-s + 8·71-s − 2·73-s + 4·77-s + 3·79-s + 12·83-s − 11·89-s + 91-s + 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.20·11-s − 0.277·13-s + 0.242·17-s + 1.14·19-s + 0.834·23-s − 0.557·29-s + 1.43·31-s − 0.657·37-s − 0.312·41-s + 1.02·47-s + 1/7·49-s − 1.23·53-s − 1.30·59-s − 1.66·61-s − 0.733·67-s + 0.949·71-s − 0.234·73-s + 0.455·77-s + 0.337·79-s + 1.31·83-s − 1.16·89-s + 0.104·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 302400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 302400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(302400\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(2414.67\)
Root analytic conductor: \(49.1393\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 302400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89998567641884, −12.34591742823535, −12.17027571533598, −11.55275284601351, −10.97198445813366, −10.67553732503362, −10.10079947956770, −9.796162995915276, −9.215732644121795, −8.872971120321944, −8.199967736599069, −7.693167952658937, −7.455414560903022, −6.932715338832568, −6.200506147795905, −5.951735940626490, −5.156818556396696, −4.976239608550866, −4.434071054505256, −3.610056888784149, −3.080934990314497, −2.843445620365698, −2.114341475860209, −1.403129920514508, −0.7188979767565290, 0, 0.7188979767565290, 1.403129920514508, 2.114341475860209, 2.843445620365698, 3.080934990314497, 3.610056888784149, 4.434071054505256, 4.976239608550866, 5.156818556396696, 5.951735940626490, 6.200506147795905, 6.932715338832568, 7.455414560903022, 7.693167952658937, 8.199967736599069, 8.872971120321944, 9.215732644121795, 9.796162995915276, 10.10079947956770, 10.67553732503362, 10.97198445813366, 11.55275284601351, 12.17027571533598, 12.34591742823535, 12.89998567641884

Graph of the $Z$-function along the critical line