Properties

Label 2-296450-1.1-c1-0-64
Degree $2$
Conductor $296450$
Sign $-1$
Analytic cond. $2367.16$
Root an. cond. $48.6535$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s − 2·12-s − 5·13-s + 16-s − 18-s − 7·19-s − 3·23-s + 2·24-s + 5·26-s + 4·27-s − 3·29-s − 5·31-s − 32-s + 36-s + 4·37-s + 7·38-s + 10·39-s + 12·41-s + 5·43-s + 3·46-s − 2·48-s − 5·52-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.577·12-s − 1.38·13-s + 1/4·16-s − 0.235·18-s − 1.60·19-s − 0.625·23-s + 0.408·24-s + 0.980·26-s + 0.769·27-s − 0.557·29-s − 0.898·31-s − 0.176·32-s + 1/6·36-s + 0.657·37-s + 1.13·38-s + 1.60·39-s + 1.87·41-s + 0.762·43-s + 0.442·46-s − 0.288·48-s − 0.693·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296450\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2367.16\)
Root analytic conductor: \(48.6535\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.54863669191939, −12.41872392867409, −12.07603422440319, −11.39206582801088, −11.03242910738315, −10.62474067076421, −10.42039931767810, −9.654153100138103, −9.279315058235375, −8.988455876352461, −8.189753188199479, −7.763483426699550, −7.389935559832285, −6.861009187520006, −6.228382478337322, −5.972057325376640, −5.574273838311195, −4.745762597093312, −4.516964252734163, −3.924569491218526, −3.012752290545828, −2.526024741906553, −1.967306678121948, −1.332781958123584, −0.4290950027997603, 0, 0.4290950027997603, 1.332781958123584, 1.967306678121948, 2.526024741906553, 3.012752290545828, 3.924569491218526, 4.516964252734163, 4.745762597093312, 5.574273838311195, 5.972057325376640, 6.228382478337322, 6.861009187520006, 7.389935559832285, 7.763483426699550, 8.189753188199479, 8.988455876352461, 9.279315058235375, 9.654153100138103, 10.42039931767810, 10.62474067076421, 11.03242910738315, 11.39206582801088, 12.07603422440319, 12.41872392867409, 12.54863669191939

Graph of the $Z$-function along the critical line