Properties

Label 2-2960-1.1-c1-0-51
Degree $2$
Conductor $2960$
Sign $1$
Analytic cond. $23.6357$
Root an. cond. $4.86165$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5-s + 5·7-s + 6·9-s + 3·11-s − 4·13-s − 3·15-s − 4·17-s + 4·19-s + 15·21-s + 4·23-s + 25-s + 9·27-s − 8·29-s + 2·31-s + 9·33-s − 5·35-s + 37-s − 12·39-s − 5·41-s + 10·43-s − 6·45-s − 7·47-s + 18·49-s − 12·51-s + 3·53-s − 3·55-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.447·5-s + 1.88·7-s + 2·9-s + 0.904·11-s − 1.10·13-s − 0.774·15-s − 0.970·17-s + 0.917·19-s + 3.27·21-s + 0.834·23-s + 1/5·25-s + 1.73·27-s − 1.48·29-s + 0.359·31-s + 1.56·33-s − 0.845·35-s + 0.164·37-s − 1.92·39-s − 0.780·41-s + 1.52·43-s − 0.894·45-s − 1.02·47-s + 18/7·49-s − 1.68·51-s + 0.412·53-s − 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2960\)    =    \(2^{4} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(23.6357\)
Root analytic conductor: \(4.86165\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.176909217\)
\(L(\frac12)\) \(\approx\) \(4.176909217\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
37 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.632951475941198083078509945500, −8.119301489678652092988393658564, −7.31848503773726943554737082576, −7.09459373627450826055160195740, −5.42428671935800367224567580508, −4.53101965528081285358444824709, −4.07911853326119487339740564494, −2.99764691803540951519435754661, −2.11570282038458346113031184697, −1.34623803582289068316495601908, 1.34623803582289068316495601908, 2.11570282038458346113031184697, 2.99764691803540951519435754661, 4.07911853326119487339740564494, 4.53101965528081285358444824709, 5.42428671935800367224567580508, 7.09459373627450826055160195740, 7.31848503773726943554737082576, 8.119301489678652092988393658564, 8.632951475941198083078509945500

Graph of the $Z$-function along the critical line