Properties

Label 2-295659-1.1-c1-0-38
Degree $2$
Conductor $295659$
Sign $1$
Analytic cond. $2360.84$
Root an. cond. $48.5885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 2·5-s − 7-s + 3·8-s + 2·10-s + 11-s + 13-s + 14-s − 16-s − 17-s + 2·20-s − 22-s − 4·23-s − 25-s − 26-s + 28-s − 5·29-s − 5·31-s − 5·32-s + 34-s + 2·35-s − 6·37-s − 6·40-s + 2·41-s + 4·43-s − 44-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.894·5-s − 0.377·7-s + 1.06·8-s + 0.632·10-s + 0.301·11-s + 0.277·13-s + 0.267·14-s − 1/4·16-s − 0.242·17-s + 0.447·20-s − 0.213·22-s − 0.834·23-s − 1/5·25-s − 0.196·26-s + 0.188·28-s − 0.928·29-s − 0.898·31-s − 0.883·32-s + 0.171·34-s + 0.338·35-s − 0.986·37-s − 0.948·40-s + 0.312·41-s + 0.609·43-s − 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(295659\)    =    \(3^{2} \cdot 7 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2360.84\)
Root analytic conductor: \(48.5885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 295659,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
19 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + T + p T^{2} \) 1.17.b
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.21410554105170, −12.55725043338720, −12.24135498733141, −11.84380458990774, −11.14426091691418, −10.78529789979111, −10.53540695352063, −9.727526624710252, −9.477101015948464, −9.009363682894327, −8.624468384382896, −8.014875652572573, −7.714845514059351, −7.291518424686361, −6.758751922992473, −6.160167982820901, −5.536315486496599, −5.166858802809229, −4.318941676849298, −4.005255574863378, −3.718927783440086, −3.023002061738169, −2.197942012227590, −1.620168787404002, −0.9678527013388691, 0, 0, 0.9678527013388691, 1.620168787404002, 2.197942012227590, 3.023002061738169, 3.718927783440086, 4.005255574863378, 4.318941676849298, 5.166858802809229, 5.536315486496599, 6.160167982820901, 6.758751922992473, 7.291518424686361, 7.714845514059351, 8.014875652572573, 8.624468384382896, 9.009363682894327, 9.477101015948464, 9.727526624710252, 10.53540695352063, 10.78529789979111, 11.14426091691418, 11.84380458990774, 12.24135498733141, 12.55725043338720, 13.21410554105170

Graph of the $Z$-function along the critical line