Properties

Label 2-293046-1.1-c1-0-9
Degree $2$
Conductor $293046$
Sign $1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 4·5-s + 6-s − 8-s + 9-s + 4·10-s − 2·11-s − 12-s + 4·15-s + 16-s − 18-s + 2·19-s − 4·20-s + 2·22-s + 24-s + 11·25-s − 27-s + 2·29-s − 4·30-s − 8·31-s − 32-s + 2·33-s + 36-s + 10·37-s − 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.78·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.26·10-s − 0.603·11-s − 0.288·12-s + 1.03·15-s + 1/4·16-s − 0.235·18-s + 0.458·19-s − 0.894·20-s + 0.426·22-s + 0.204·24-s + 11/5·25-s − 0.192·27-s + 0.371·29-s − 0.730·30-s − 1.43·31-s − 0.176·32-s + 0.348·33-s + 1/6·36-s + 1.64·37-s − 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5481733113\)
\(L(\frac12)\) \(\approx\) \(0.5481733113\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.63551030739459, −12.09746707715382, −11.61196641689941, −11.36223815769431, −10.88508902339282, −10.65910906501495, −9.986002213390019, −9.383114252680359, −9.114546964979719, −8.390910885672851, −7.926525407253150, −7.626935034740154, −7.387379675938688, −6.700386891628634, −6.225403965053246, −5.686784127467471, −4.961683647130165, −4.638608366751518, −4.015344208760030, −3.511250255958828, −2.969372159512404, −2.395995707742725, −1.511724513133793, −0.8269238351958147, −0.3174130859052060, 0.3174130859052060, 0.8269238351958147, 1.511724513133793, 2.395995707742725, 2.969372159512404, 3.511250255958828, 4.015344208760030, 4.638608366751518, 4.961683647130165, 5.686784127467471, 6.225403965053246, 6.700386891628634, 7.387379675938688, 7.626935034740154, 7.926525407253150, 8.390910885672851, 9.114546964979719, 9.383114252680359, 9.986002213390019, 10.65910906501495, 10.88508902339282, 11.36223815769431, 11.61196641689941, 12.09746707715382, 12.63551030739459

Graph of the $Z$-function along the critical line