Properties

Label 2-286650-1.1-c1-0-15
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 5·11-s − 13-s + 16-s + 2·17-s + 2·19-s − 5·22-s − 8·23-s − 26-s + 5·29-s + 4·31-s + 32-s + 2·34-s − 10·37-s + 2·38-s + 9·41-s − 5·43-s − 5·44-s − 8·46-s − 2·47-s − 52-s − 9·53-s + 5·58-s − 9·59-s − 12·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1.50·11-s − 0.277·13-s + 1/4·16-s + 0.485·17-s + 0.458·19-s − 1.06·22-s − 1.66·23-s − 0.196·26-s + 0.928·29-s + 0.718·31-s + 0.176·32-s + 0.342·34-s − 1.64·37-s + 0.324·38-s + 1.40·41-s − 0.762·43-s − 0.753·44-s − 1.17·46-s − 0.291·47-s − 0.138·52-s − 1.23·53-s + 0.656·58-s − 1.17·59-s − 1.53·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.079848220\)
\(L(\frac12)\) \(\approx\) \(1.079848220\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.62331172844721, −12.39639065550978, −11.79092858732474, −11.64818835010743, −10.73348579095507, −10.54203097493512, −10.03281615436918, −9.777643814057508, −8.955357432752059, −8.462044652426808, −7.935423053695826, −7.538700453532763, −7.264262743794713, −6.437337039526357, −5.946251656527341, −5.723026891209074, −4.988519021950121, −4.626710678073166, −4.239971460947219, −3.312654397215305, −3.048340595905143, −2.564263527573796, −1.808041239342342, −1.346386566123985, −0.2294055630620185, 0.2294055630620185, 1.346386566123985, 1.808041239342342, 2.564263527573796, 3.048340595905143, 3.312654397215305, 4.239971460947219, 4.626710678073166, 4.988519021950121, 5.723026891209074, 5.946251656527341, 6.437337039526357, 7.264262743794713, 7.538700453532763, 7.935423053695826, 8.462044652426808, 8.955357432752059, 9.777643814057508, 10.03281615436918, 10.54203097493512, 10.73348579095507, 11.64818835010743, 11.79092858732474, 12.39639065550978, 12.62331172844721

Graph of the $Z$-function along the critical line