Properties

Label 2-168e2-1.1-c1-0-146
Degree $2$
Conductor $28224$
Sign $-1$
Analytic cond. $225.369$
Root an. cond. $15.0123$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 11-s + 2·13-s + 3·17-s + 5·19-s + 3·23-s − 4·25-s − 6·29-s + 31-s + 5·37-s − 10·41-s + 4·43-s + 47-s − 9·53-s − 55-s − 3·59-s + 3·61-s + 2·65-s − 11·67-s − 16·71-s − 7·73-s − 11·79-s + 4·83-s + 3·85-s − 9·89-s + 5·95-s − 6·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.301·11-s + 0.554·13-s + 0.727·17-s + 1.14·19-s + 0.625·23-s − 4/5·25-s − 1.11·29-s + 0.179·31-s + 0.821·37-s − 1.56·41-s + 0.609·43-s + 0.145·47-s − 1.23·53-s − 0.134·55-s − 0.390·59-s + 0.384·61-s + 0.248·65-s − 1.34·67-s − 1.89·71-s − 0.819·73-s − 1.23·79-s + 0.439·83-s + 0.325·85-s − 0.953·89-s + 0.512·95-s − 0.609·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28224\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(225.369\)
Root analytic conductor: \(15.0123\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 28224,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.53146241310813, −14.92103918428167, −14.38096442364256, −13.87233955728400, −13.24527655602769, −13.07675303834670, −12.23461704862250, −11.65561557303952, −11.31560810756328, −10.50973098810586, −10.11823966008227, −9.457136021804975, −9.100383366021116, −8.336648185247202, −7.686651282359549, −7.331207770429055, −6.533462691284026, −5.771640917102375, −5.563909166296976, −4.764986675602535, −4.028796389096090, −3.243660680264090, −2.800309342271864, −1.717871400612755, −1.213863507726078, 0, 1.213863507726078, 1.717871400612755, 2.800309342271864, 3.243660680264090, 4.028796389096090, 4.764986675602535, 5.563909166296976, 5.771640917102375, 6.533462691284026, 7.331207770429055, 7.686651282359549, 8.336648185247202, 9.100383366021116, 9.457136021804975, 10.11823966008227, 10.50973098810586, 11.31560810756328, 11.65561557303952, 12.23461704862250, 13.07675303834670, 13.24527655602769, 13.87233955728400, 14.38096442364256, 14.92103918428167, 15.53146241310813

Graph of the $Z$-function along the critical line