Properties

Label 2-27200-1.1-c1-0-63
Degree $2$
Conductor $27200$
Sign $1$
Analytic cond. $217.193$
Root an. cond. $14.7374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 2·7-s + 6·9-s − 4·11-s − 13-s + 17-s − 7·19-s + 6·21-s − 6·23-s − 9·27-s + 7·29-s + 31-s + 12·33-s − 8·37-s + 3·39-s + 10·41-s + 2·43-s + 3·47-s − 3·49-s − 3·51-s − 3·53-s + 21·57-s + 5·59-s − 7·61-s − 12·63-s − 14·67-s + 18·69-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.755·7-s + 2·9-s − 1.20·11-s − 0.277·13-s + 0.242·17-s − 1.60·19-s + 1.30·21-s − 1.25·23-s − 1.73·27-s + 1.29·29-s + 0.179·31-s + 2.08·33-s − 1.31·37-s + 0.480·39-s + 1.56·41-s + 0.304·43-s + 0.437·47-s − 3/7·49-s − 0.420·51-s − 0.412·53-s + 2.78·57-s + 0.650·59-s − 0.896·61-s − 1.51·63-s − 1.71·67-s + 2.16·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27200\)    =    \(2^{6} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(217.193\)
Root analytic conductor: \(14.7374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 27200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.86946081622599, −15.58089161370798, −14.89761114952868, −14.10731061131357, −13.50433197739791, −12.81948367871229, −12.56937041379419, −12.09983522099973, −11.57617190321921, −10.75343472894409, −10.44629889668217, −10.20644975917670, −9.474430993032857, −8.672182468439851, −7.965545102496076, −7.368390047003422, −6.701476640756243, −6.147969656093695, −5.851449960826423, −5.127478052553156, −4.513868705169395, −4.036551201241183, −2.957493377412860, −2.250044954274459, −1.239470448185257, 0, 0, 1.239470448185257, 2.250044954274459, 2.957493377412860, 4.036551201241183, 4.513868705169395, 5.127478052553156, 5.851449960826423, 6.147969656093695, 6.701476640756243, 7.368390047003422, 7.965545102496076, 8.672182468439851, 9.474430993032857, 10.20644975917670, 10.44629889668217, 10.75343472894409, 11.57617190321921, 12.09983522099973, 12.56937041379419, 12.81948367871229, 13.50433197739791, 14.10731061131357, 14.89761114952868, 15.58089161370798, 15.86946081622599

Graph of the $Z$-function along the critical line