| L(s)  = 1 | − 3·3-s         − 2·7-s     + 6·9-s     − 4·11-s     − 13-s         + 17-s     − 7·19-s     + 6·21-s     − 6·23-s         − 9·27-s     + 7·29-s     + 31-s     + 12·33-s         − 8·37-s     + 3·39-s     + 10·41-s     + 2·43-s         + 3·47-s     − 3·49-s     − 3·51-s     − 3·53-s         + 21·57-s     + 5·59-s     − 7·61-s     − 12·63-s         − 14·67-s     + 18·69-s  + ⋯ | 
| L(s)  = 1 | − 1.73·3-s         − 0.755·7-s     + 2·9-s     − 1.20·11-s     − 0.277·13-s         + 0.242·17-s     − 1.60·19-s     + 1.30·21-s     − 1.25·23-s         − 1.73·27-s     + 1.29·29-s     + 0.179·31-s     + 2.08·33-s         − 1.31·37-s     + 0.480·39-s     + 1.56·41-s     + 0.304·43-s         + 0.437·47-s     − 3/7·49-s     − 0.420·51-s     − 0.412·53-s         + 2.78·57-s     + 0.650·59-s     − 0.896·61-s     − 1.51·63-s         − 1.71·67-s     + 2.16·69-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 17 | \( 1 - T \) |  | 
| good | 3 | \( 1 + p T + p T^{2} \) | 1.3.d | 
|  | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c | 
|  | 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e | 
|  | 13 | \( 1 + T + p T^{2} \) | 1.13.b | 
|  | 19 | \( 1 + 7 T + p T^{2} \) | 1.19.h | 
|  | 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g | 
|  | 29 | \( 1 - 7 T + p T^{2} \) | 1.29.ah | 
|  | 31 | \( 1 - T + p T^{2} \) | 1.31.ab | 
|  | 37 | \( 1 + 8 T + p T^{2} \) | 1.37.i | 
|  | 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak | 
|  | 43 | \( 1 - 2 T + p T^{2} \) | 1.43.ac | 
|  | 47 | \( 1 - 3 T + p T^{2} \) | 1.47.ad | 
|  | 53 | \( 1 + 3 T + p T^{2} \) | 1.53.d | 
|  | 59 | \( 1 - 5 T + p T^{2} \) | 1.59.af | 
|  | 61 | \( 1 + 7 T + p T^{2} \) | 1.61.h | 
|  | 67 | \( 1 + 14 T + p T^{2} \) | 1.67.o | 
|  | 71 | \( 1 + 3 T + p T^{2} \) | 1.71.d | 
|  | 73 | \( 1 + 15 T + p T^{2} \) | 1.73.p | 
|  | 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai | 
|  | 83 | \( 1 + p T^{2} \) | 1.83.a | 
|  | 89 | \( 1 + T + p T^{2} \) | 1.89.b | 
|  | 97 | \( 1 + 5 T + p T^{2} \) | 1.97.f | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.86946081622599, −15.58089161370798, −14.89761114952868, −14.10731061131357, −13.50433197739791, −12.81948367871229, −12.56937041379419, −12.09983522099973, −11.57617190321921, −10.75343472894409, −10.44629889668217, −10.20644975917670, −9.474430993032857, −8.672182468439851, −7.965545102496076, −7.368390047003422, −6.701476640756243, −6.147969656093695, −5.851449960826423, −5.127478052553156, −4.513868705169395, −4.036551201241183, −2.957493377412860, −2.250044954274459, −1.239470448185257, 0, 0, 
1.239470448185257, 2.250044954274459, 2.957493377412860, 4.036551201241183, 4.513868705169395, 5.127478052553156, 5.851449960826423, 6.147969656093695, 6.701476640756243, 7.368390047003422, 7.965545102496076, 8.672182468439851, 9.474430993032857, 10.20644975917670, 10.44629889668217, 10.75343472894409, 11.57617190321921, 12.09983522099973, 12.56937041379419, 12.81948367871229, 13.50433197739791, 14.10731061131357, 14.89761114952868, 15.58089161370798, 15.86946081622599
