Properties

Label 2-266175-1.1-c1-0-120
Degree $2$
Conductor $266175$
Sign $-1$
Analytic cond. $2125.41$
Root an. cond. $46.1022$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 7-s + 3·11-s + 2·14-s − 4·16-s + 6·17-s + 6·19-s + 6·22-s + 2·23-s + 2·28-s − 10·29-s − 4·31-s − 8·32-s + 12·34-s − 2·37-s + 12·38-s − 8·41-s + 2·43-s + 6·44-s + 4·46-s + 49-s − 14·53-s − 20·58-s + 6·59-s + 10·61-s − 8·62-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.377·7-s + 0.904·11-s + 0.534·14-s − 16-s + 1.45·17-s + 1.37·19-s + 1.27·22-s + 0.417·23-s + 0.377·28-s − 1.85·29-s − 0.718·31-s − 1.41·32-s + 2.05·34-s − 0.328·37-s + 1.94·38-s − 1.24·41-s + 0.304·43-s + 0.904·44-s + 0.589·46-s + 1/7·49-s − 1.92·53-s − 2.62·58-s + 0.781·59-s + 1.28·61-s − 1.01·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266175\)    =    \(3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(2125.41\)
Root analytic conductor: \(46.1022\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 266175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89987626693609, −12.62373306520362, −12.29903037893235, −11.55781134757218, −11.43752449745519, −11.13696249429660, −10.27437672927809, −9.756237350729068, −9.358813192925073, −8.982095704940716, −8.226074026131121, −7.782560499981618, −7.221018909951024, −6.811229782901302, −6.319733000674849, −5.557426370991700, −5.303168868404144, −5.147813453387226, −4.231035481469760, −3.766377655044552, −3.462127825601112, −2.987805002388780, −2.199473269999729, −1.553304556098053, −1.044790174505003, 0, 1.044790174505003, 1.553304556098053, 2.199473269999729, 2.987805002388780, 3.462127825601112, 3.766377655044552, 4.231035481469760, 5.147813453387226, 5.303168868404144, 5.557426370991700, 6.319733000674849, 6.811229782901302, 7.221018909951024, 7.782560499981618, 8.226074026131121, 8.982095704940716, 9.358813192925073, 9.756237350729068, 10.27437672927809, 11.13696249429660, 11.43752449745519, 11.55781134757218, 12.29903037893235, 12.62373306520362, 12.89987626693609

Graph of the $Z$-function along the critical line