| L(s)  = 1  |   + 2·2-s     + 2·4-s       + 7-s         + 3·11-s       + 2·14-s     − 4·16-s   + 6·17-s     + 6·19-s       + 6·22-s   + 2·23-s           + 2·28-s   − 10·29-s     − 4·31-s   − 8·32-s     + 12·34-s       − 2·37-s   + 12·38-s       − 8·41-s     + 2·43-s   + 6·44-s     + 4·46-s       + 49-s         − 14·53-s           − 20·58-s   + 6·59-s     + 10·61-s   − 8·62-s  + ⋯ | 
 
| L(s)  = 1  |   + 1.41·2-s     + 4-s       + 0.377·7-s         + 0.904·11-s       + 0.534·14-s     − 16-s   + 1.45·17-s     + 1.37·19-s       + 1.27·22-s   + 0.417·23-s           + 0.377·28-s   − 1.85·29-s     − 0.718·31-s   − 1.41·32-s     + 2.05·34-s       − 0.328·37-s   + 1.94·38-s       − 1.24·41-s     + 0.304·43-s   + 0.904·44-s     + 0.589·46-s       + 1/7·49-s         − 1.92·53-s           − 2.62·58-s   + 0.781·59-s     + 1.28·61-s   − 1.01·62-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 7 |  \( 1 - T \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 2 |  \( 1 - p T + p T^{2} \)  |  1.2.ac  | 
 | 11 |  \( 1 - 3 T + p T^{2} \)  |  1.11.ad  | 
 | 17 |  \( 1 - 6 T + p T^{2} \)  |  1.17.ag  | 
 | 19 |  \( 1 - 6 T + p T^{2} \)  |  1.19.ag  | 
 | 23 |  \( 1 - 2 T + p T^{2} \)  |  1.23.ac  | 
 | 29 |  \( 1 + 10 T + p T^{2} \)  |  1.29.k  | 
 | 31 |  \( 1 + 4 T + p T^{2} \)  |  1.31.e  | 
 | 37 |  \( 1 + 2 T + p T^{2} \)  |  1.37.c  | 
 | 41 |  \( 1 + 8 T + p T^{2} \)  |  1.41.i  | 
 | 43 |  \( 1 - 2 T + p T^{2} \)  |  1.43.ac  | 
 | 47 |  \( 1 + p T^{2} \)  |  1.47.a  | 
 | 53 |  \( 1 + 14 T + p T^{2} \)  |  1.53.o  | 
 | 59 |  \( 1 - 6 T + p T^{2} \)  |  1.59.ag  | 
 | 61 |  \( 1 - 10 T + p T^{2} \)  |  1.61.ak  | 
 | 67 |  \( 1 - 10 T + p T^{2} \)  |  1.67.ak  | 
 | 71 |  \( 1 - 9 T + p T^{2} \)  |  1.71.aj  | 
 | 73 |  \( 1 - 3 T + p T^{2} \)  |  1.73.ad  | 
 | 79 |  \( 1 - 5 T + p T^{2} \)  |  1.79.af  | 
 | 83 |  \( 1 + 11 T + p T^{2} \)  |  1.83.l  | 
 | 89 |  \( 1 + 14 T + p T^{2} \)  |  1.89.o  | 
 | 97 |  \( 1 + 7 T + p T^{2} \)  |  1.97.h  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.89987626693609, −12.62373306520362, −12.29903037893235, −11.55781134757218, −11.43752449745519, −11.13696249429660, −10.27437672927809, −9.756237350729068, −9.358813192925073, −8.982095704940716, −8.226074026131121, −7.782560499981618, −7.221018909951024, −6.811229782901302, −6.319733000674849, −5.557426370991700, −5.303168868404144, −5.147813453387226, −4.231035481469760, −3.766377655044552, −3.462127825601112, −2.987805002388780, −2.199473269999729, −1.553304556098053, −1.044790174505003, 0, 
1.044790174505003, 1.553304556098053, 2.199473269999729, 2.987805002388780, 3.462127825601112, 3.766377655044552, 4.231035481469760, 5.147813453387226, 5.303168868404144, 5.557426370991700, 6.319733000674849, 6.811229782901302, 7.221018909951024, 7.782560499981618, 8.226074026131121, 8.982095704940716, 9.358813192925073, 9.756237350729068, 10.27437672927809, 11.13696249429660, 11.43752449745519, 11.55781134757218, 12.29903037893235, 12.62373306520362, 12.89987626693609