| L(s)  = 1  |       − 2·4-s       + 7-s         − 4·11-s           + 4·16-s   − 4·17-s     + 19-s         + 4·23-s           − 2·28-s   − 4·29-s     + 5·31-s             − 2·37-s             + 4·43-s   + 8·44-s       + 2·47-s     + 49-s         − 6·53-s             − 12·59-s     − 15·61-s       − 8·64-s       − 4·67-s   + 8·68-s       − 10·71-s     − 3·73-s       − 2·76-s   − 4·77-s     − 11·79-s         + 12·83-s  + ⋯ | 
 
| L(s)  = 1  |       − 4-s       + 0.377·7-s         − 1.20·11-s           + 16-s   − 0.970·17-s     + 0.229·19-s         + 0.834·23-s           − 0.377·28-s   − 0.742·29-s     + 0.898·31-s             − 0.328·37-s             + 0.609·43-s   + 1.20·44-s       + 0.291·47-s     + 1/7·49-s         − 0.824·53-s             − 1.56·59-s     − 1.92·61-s       − 64-s       − 0.488·67-s   + 0.970·68-s       − 1.18·71-s     − 0.351·73-s       − 0.229·76-s   − 0.455·77-s     − 1.23·79-s         + 1.31·83-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 \)  |    | 
 | 7 |  \( 1 - T \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 2 |  \( 1 + p T^{2} \)  |  1.2.a  | 
 | 11 |  \( 1 + 4 T + p T^{2} \)  |  1.11.e  | 
 | 17 |  \( 1 + 4 T + p T^{2} \)  |  1.17.e  | 
 | 19 |  \( 1 - T + p T^{2} \)  |  1.19.ab  | 
 | 23 |  \( 1 - 4 T + p T^{2} \)  |  1.23.ae  | 
 | 29 |  \( 1 + 4 T + p T^{2} \)  |  1.29.e  | 
 | 31 |  \( 1 - 5 T + p T^{2} \)  |  1.31.af  | 
 | 37 |  \( 1 + 2 T + p T^{2} \)  |  1.37.c  | 
 | 41 |  \( 1 + p T^{2} \)  |  1.41.a  | 
 | 43 |  \( 1 - 4 T + p T^{2} \)  |  1.43.ae  | 
 | 47 |  \( 1 - 2 T + p T^{2} \)  |  1.47.ac  | 
 | 53 |  \( 1 + 6 T + p T^{2} \)  |  1.53.g  | 
 | 59 |  \( 1 + 12 T + p T^{2} \)  |  1.59.m  | 
 | 61 |  \( 1 + 15 T + p T^{2} \)  |  1.61.p  | 
 | 67 |  \( 1 + 4 T + p T^{2} \)  |  1.67.e  | 
 | 71 |  \( 1 + 10 T + p T^{2} \)  |  1.71.k  | 
 | 73 |  \( 1 + 3 T + p T^{2} \)  |  1.73.d  | 
 | 79 |  \( 1 + 11 T + p T^{2} \)  |  1.79.l  | 
 | 83 |  \( 1 - 12 T + p T^{2} \)  |  1.83.am  | 
 | 89 |  \( 1 + 8 T + p T^{2} \)  |  1.89.i  | 
 | 97 |  \( 1 + 7 T + p T^{2} \)  |  1.97.h  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.31101402845446, −12.84484448006517, −12.43659171072400, −11.99726772687562, −11.29660463374448, −10.89297302258913, −10.50500010594456, −10.09298967564469, −9.383692401127721, −9.113450543778519, −8.697241204218165, −8.095776665850370, −7.706465742131035, −7.363960950555791, −6.632508860211045, −6.031045341790430, −5.569064695253094, −5.024963506696571, −4.640041698692231, −4.265776264850771, −3.575148976858028, −2.844458939929504, −2.620907983231544, −1.597602252909672, −1.176161570804885, 0, 0, 
1.176161570804885, 1.597602252909672, 2.620907983231544, 2.844458939929504, 3.575148976858028, 4.265776264850771, 4.640041698692231, 5.024963506696571, 5.569064695253094, 6.031045341790430, 6.632508860211045, 7.363960950555791, 7.706465742131035, 8.095776665850370, 8.697241204218165, 9.113450543778519, 9.383692401127721, 10.09298967564469, 10.50500010594456, 10.89297302258913, 11.29660463374448, 11.99726772687562, 12.43659171072400, 12.84484448006517, 13.31101402845446