Properties

Label 2-25350-1.1-c1-0-68
Degree $2$
Conductor $25350$
Sign $-1$
Analytic cond. $202.420$
Root an. cond. $14.2274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 4·7-s + 8-s + 9-s − 5·11-s + 12-s − 4·14-s + 16-s + 2·17-s + 18-s − 2·19-s − 4·21-s − 5·22-s + 7·23-s + 24-s + 27-s − 4·28-s + 2·29-s − 2·31-s + 32-s − 5·33-s + 2·34-s + 36-s + 3·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 1.50·11-s + 0.288·12-s − 1.06·14-s + 1/4·16-s + 0.485·17-s + 0.235·18-s − 0.458·19-s − 0.872·21-s − 1.06·22-s + 1.45·23-s + 0.204·24-s + 0.192·27-s − 0.755·28-s + 0.371·29-s − 0.359·31-s + 0.176·32-s − 0.870·33-s + 0.342·34-s + 1/6·36-s + 0.493·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(202.420\)
Root analytic conductor: \(14.2274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 25350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.54756207276007, −15.08872773481666, −14.62501499141475, −13.83082708498798, −13.39740172561352, −13.04846876849336, −12.44656722955808, −12.33049202594356, −11.13438462985272, −10.79382561915479, −10.14697996645582, −9.707814740846635, −9.033993191559539, −8.483988822930016, −7.629856177844427, −7.278750830360763, −6.671598157290903, −5.864793394343702, −5.553473611291798, −4.636275647959041, −4.088257558704781, −3.153972772931795, −2.904674561594679, −2.351874058400841, −1.122924990226846, 0, 1.122924990226846, 2.351874058400841, 2.904674561594679, 3.153972772931795, 4.088257558704781, 4.636275647959041, 5.553473611291798, 5.864793394343702, 6.671598157290903, 7.278750830360763, 7.629856177844427, 8.483988822930016, 9.033993191559539, 9.707814740846635, 10.14697996645582, 10.79382561915479, 11.13438462985272, 12.33049202594356, 12.44656722955808, 13.04846876849336, 13.39740172561352, 13.83082708498798, 14.62501499141475, 15.08872773481666, 15.54756207276007

Graph of the $Z$-function along the critical line