Properties

Label 2-498e2-1.1-c1-0-9
Degree $2$
Conductor $248004$
Sign $-1$
Analytic cond. $1980.32$
Root an. cond. $44.5008$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·7-s + 7·13-s + 19-s − 5·25-s − 7·31-s − 10·37-s − 5·43-s + 18·49-s + 14·61-s + 16·67-s − 17·73-s − 17·79-s + 35·91-s + 19·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.88·7-s + 1.94·13-s + 0.229·19-s − 25-s − 1.25·31-s − 1.64·37-s − 0.762·43-s + 18/7·49-s + 1.79·61-s + 1.95·67-s − 1.98·73-s − 1.91·79-s + 3.66·91-s + 1.92·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248004 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248004 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248004\)    =    \(2^{2} \cdot 3^{2} \cdot 83^{2}\)
Sign: $-1$
Analytic conductor: \(1980.32\)
Root analytic conductor: \(44.5008\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248004,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 17 T + p T^{2} \) 1.73.r
79 \( 1 + 17 T + p T^{2} \) 1.79.r
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30501116187932, −12.65580307655815, −11.95404625654380, −11.60405210758258, −11.27294564707465, −10.93357542146055, −10.37236640594349, −10.02574153371753, −9.152592584349796, −8.776078875131065, −8.438291609370867, −8.000533380504447, −7.569881782684090, −6.956856347799126, −6.499133858613212, −5.707819288805468, −5.438471966657674, −5.061362901845978, −4.245795981000433, −3.870492900746607, −3.496456834394401, −2.590680966227064, −1.859411629373033, −1.526687497062629, −1.044164798797656, 0, 1.044164798797656, 1.526687497062629, 1.859411629373033, 2.590680966227064, 3.496456834394401, 3.870492900746607, 4.245795981000433, 5.061362901845978, 5.438471966657674, 5.707819288805468, 6.499133858613212, 6.956856347799126, 7.569881782684090, 8.000533380504447, 8.438291609370867, 8.776078875131065, 9.152592584349796, 10.02574153371753, 10.37236640594349, 10.93357542146055, 11.27294564707465, 11.60405210758258, 11.95404625654380, 12.65580307655815, 13.30501116187932

Graph of the $Z$-function along the critical line