Properties

Label 2-244800-1.1-c1-0-135
Degree $2$
Conductor $244800$
Sign $1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 17-s − 4·19-s + 6·29-s + 4·31-s + 10·37-s − 12·41-s − 10·43-s + 8·47-s − 3·49-s + 6·53-s − 6·59-s − 6·61-s + 6·67-s + 2·71-s − 12·73-s + 8·79-s + 2·89-s + 16·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 2·119-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.242·17-s − 0.917·19-s + 1.11·29-s + 0.718·31-s + 1.64·37-s − 1.87·41-s − 1.52·43-s + 1.16·47-s − 3/7·49-s + 0.824·53-s − 0.781·59-s − 0.768·61-s + 0.733·67-s + 0.237·71-s − 1.40·73-s + 0.900·79-s + 0.211·89-s + 1.62·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.183·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.692033566\)
\(L(\frac12)\) \(\approx\) \(2.692033566\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94937638466764, −12.30450973266947, −11.85990719536913, −11.62421841184378, −10.94182379622376, −10.66072973774595, −9.985337612584433, −9.853898120454804, −8.951063210215732, −8.635086788348639, −8.241073679303650, −7.779533346080726, −7.213705254544650, −6.632454976935612, −6.253019585338451, −5.753902738994869, −4.994150300631479, −4.616902249171668, −4.343256337704977, −3.472388839941379, −3.052168972494544, −2.254559904556252, −1.899183994722054, −1.129983977546049, −0.4774065885559407, 0.4774065885559407, 1.129983977546049, 1.899183994722054, 2.254559904556252, 3.052168972494544, 3.472388839941379, 4.343256337704977, 4.616902249171668, 4.994150300631479, 5.753902738994869, 6.253019585338451, 6.632454976935612, 7.213705254544650, 7.779533346080726, 8.241073679303650, 8.635086788348639, 8.951063210215732, 9.853898120454804, 9.985337612584433, 10.66072973774595, 10.94182379622376, 11.62421841184378, 11.85990719536913, 12.30450973266947, 12.94937638466764

Graph of the $Z$-function along the critical line