Properties

Label 2-244608-1.1-c1-0-77
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 13-s − 2·15-s + 2·17-s − 6·19-s − 8·23-s − 25-s + 27-s + 4·29-s − 4·31-s + 6·37-s + 39-s + 8·43-s − 2·45-s + 2·51-s − 6·57-s − 8·59-s + 10·61-s − 2·65-s + 14·67-s − 8·69-s − 8·71-s + 2·73-s − 75-s + 14·79-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.277·13-s − 0.516·15-s + 0.485·17-s − 1.37·19-s − 1.66·23-s − 1/5·25-s + 0.192·27-s + 0.742·29-s − 0.718·31-s + 0.986·37-s + 0.160·39-s + 1.21·43-s − 0.298·45-s + 0.280·51-s − 0.794·57-s − 1.04·59-s + 1.28·61-s − 0.248·65-s + 1.71·67-s − 0.963·69-s − 0.949·71-s + 0.234·73-s − 0.115·75-s + 1.57·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.09609441265682, −12.53270454726573, −12.23829366810116, −11.85622440558323, −11.09095582237624, −10.94672134715792, −10.31700722922709, −9.760693771747415, −9.468305585062240, −8.721564431674801, −8.373915177817704, −7.930780756909784, −7.680887754760324, −7.017488727937020, −6.482150335370605, −5.988478000171709, −5.507476003998260, −4.680005763951008, −4.225162327315892, −3.846345022998999, −3.464154286543794, −2.593041406250694, −2.246799486739953, −1.534845218062358, −0.7249467857494007, 0, 0.7249467857494007, 1.534845218062358, 2.246799486739953, 2.593041406250694, 3.464154286543794, 3.846345022998999, 4.225162327315892, 4.680005763951008, 5.507476003998260, 5.988478000171709, 6.482150335370605, 7.017488727937020, 7.680887754760324, 7.930780756909784, 8.373915177817704, 8.721564431674801, 9.468305585062240, 9.760693771747415, 10.31700722922709, 10.94672134715792, 11.09095582237624, 11.85622440558323, 12.23829366810116, 12.53270454726573, 13.09609441265682

Graph of the $Z$-function along the critical line