Properties

Label 2-23100-1.1-c1-0-5
Degree $2$
Conductor $23100$
Sign $1$
Analytic cond. $184.454$
Root an. cond. $13.5814$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 11-s − 13-s − 4·17-s + 3·19-s − 21-s − 6·23-s − 27-s + 7·29-s + 4·31-s − 33-s − 37-s + 39-s − 4·41-s + 2·43-s − 7·47-s + 49-s + 4·51-s − 10·53-s − 3·57-s − 9·59-s − 2·61-s + 63-s + 9·67-s + 6·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.277·13-s − 0.970·17-s + 0.688·19-s − 0.218·21-s − 1.25·23-s − 0.192·27-s + 1.29·29-s + 0.718·31-s − 0.174·33-s − 0.164·37-s + 0.160·39-s − 0.624·41-s + 0.304·43-s − 1.02·47-s + 1/7·49-s + 0.560·51-s − 1.37·53-s − 0.397·57-s − 1.17·59-s − 0.256·61-s + 0.125·63-s + 1.09·67-s + 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(184.454\)
Root analytic conductor: \(13.5814\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 23100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.494894010\)
\(L(\frac12)\) \(\approx\) \(1.494894010\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.72309129740363, −15.01821063289652, −14.16715568618929, −14.03056244099139, −13.32924006956493, −12.68422757772854, −11.98565252765305, −11.84774135246426, −11.10790254089083, −10.62972396082792, −9.976372390520079, −9.518634295025527, −8.828307088453646, −8.080707433645977, −7.764267454602228, −6.801694089486024, −6.463369504894282, −5.861877498056565, −4.914544630168278, −4.722235216992882, −3.897070458471122, −3.106829513210466, −2.212375926696936, −1.495768851534657, −0.5188218761600296, 0.5188218761600296, 1.495768851534657, 2.212375926696936, 3.106829513210466, 3.897070458471122, 4.722235216992882, 4.914544630168278, 5.861877498056565, 6.463369504894282, 6.801694089486024, 7.764267454602228, 8.080707433645977, 8.828307088453646, 9.518634295025527, 9.976372390520079, 10.62972396082792, 11.10790254089083, 11.84774135246426, 11.98565252765305, 12.68422757772854, 13.32924006956493, 14.03056244099139, 14.16715568618929, 15.01821063289652, 15.72309129740363

Graph of the $Z$-function along the critical line