Properties

Label 2-225420-1.1-c1-0-4
Degree $2$
Conductor $225420$
Sign $1$
Analytic cond. $1799.98$
Root an. cond. $42.4262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 9-s − 6·11-s − 13-s + 15-s + 4·23-s + 25-s + 27-s − 2·29-s + 6·31-s − 6·33-s − 6·37-s − 39-s − 2·41-s − 10·43-s + 45-s + 6·47-s − 7·49-s − 6·53-s − 6·55-s + 6·61-s − 65-s − 2·67-s + 4·69-s − 10·71-s + 2·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1/3·9-s − 1.80·11-s − 0.277·13-s + 0.258·15-s + 0.834·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.07·31-s − 1.04·33-s − 0.986·37-s − 0.160·39-s − 0.312·41-s − 1.52·43-s + 0.149·45-s + 0.875·47-s − 49-s − 0.824·53-s − 0.809·55-s + 0.768·61-s − 0.124·65-s − 0.244·67-s + 0.481·69-s − 1.18·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225420\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1799.98\)
Root analytic conductor: \(42.4262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 225420,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.589458536\)
\(L(\frac12)\) \(\approx\) \(1.589458536\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94828819015359, −12.71207604408756, −12.07470587412528, −11.59800490297426, −10.85338796444402, −10.65737978992675, −10.05728666975964, −9.767381794137009, −9.257570124216181, −8.582286579781668, −8.256305149037199, −7.876903930634108, −7.213702131185395, −6.884043084114761, −6.291471668325385, −5.554943142430070, −5.200151298398994, −4.796591888476896, −4.177325849075263, −3.373169381508754, −2.907682910589747, −2.570532746917008, −1.865399511379600, −1.315411101161123, −0.3206748547502533, 0.3206748547502533, 1.315411101161123, 1.865399511379600, 2.570532746917008, 2.907682910589747, 3.373169381508754, 4.177325849075263, 4.796591888476896, 5.200151298398994, 5.554943142430070, 6.291471668325385, 6.884043084114761, 7.213702131185395, 7.876903930634108, 8.256305149037199, 8.582286579781668, 9.257570124216181, 9.767381794137009, 10.05728666975964, 10.65737978992675, 10.85338796444402, 11.59800490297426, 12.07470587412528, 12.71207604408756, 12.94828819015359

Graph of the $Z$-function along the critical line