Properties

Label 2-22491-1.1-c1-0-30
Degree $2$
Conductor $22491$
Sign $-1$
Analytic cond. $179.591$
Root an. cond. $13.4011$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 4·11-s − 4·16-s + 17-s + 6·19-s − 8·22-s − 7·23-s − 5·25-s − 29-s − 9·31-s + 8·32-s − 2·34-s + 6·37-s − 12·38-s + 6·41-s − 9·43-s + 8·44-s + 14·46-s − 3·47-s + 10·50-s + 2·53-s + 2·58-s + 3·59-s − 3·61-s + 18·62-s − 8·64-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 1.20·11-s − 16-s + 0.242·17-s + 1.37·19-s − 1.70·22-s − 1.45·23-s − 25-s − 0.185·29-s − 1.61·31-s + 1.41·32-s − 0.342·34-s + 0.986·37-s − 1.94·38-s + 0.937·41-s − 1.37·43-s + 1.20·44-s + 2.06·46-s − 0.437·47-s + 1.41·50-s + 0.274·53-s + 0.262·58-s + 0.390·59-s − 0.384·61-s + 2.28·62-s − 64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22491 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22491 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(22491\)    =    \(3^{3} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(179.591\)
Root analytic conductor: \(13.4011\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 22491,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.95611590635813, −15.50798086833228, −14.66454600404421, −14.21645679416450, −13.72617332687117, −13.09652921762561, −12.25393995669408, −11.81499144010261, −11.24292571410050, −10.88915633661815, −9.808636755020988, −9.720436420205926, −9.377497464589858, −8.445609974426517, −8.162322879605533, −7.372813468826135, −7.100235189561660, −6.208119951992608, −5.710227631756171, −4.836264429027323, −3.941994338436627, −3.534981057004461, −2.343135390370603, −1.680975638772707, −1.004477975379811, 0, 1.004477975379811, 1.680975638772707, 2.343135390370603, 3.534981057004461, 3.941994338436627, 4.836264429027323, 5.710227631756171, 6.208119951992608, 7.100235189561660, 7.372813468826135, 8.162322879605533, 8.445609974426517, 9.377497464589858, 9.720436420205926, 9.808636755020988, 10.88915633661815, 11.24292571410050, 11.81499144010261, 12.25393995669408, 13.09652921762561, 13.72617332687117, 14.21645679416450, 14.66454600404421, 15.50798086833228, 15.95611590635813

Graph of the $Z$-function along the critical line