Properties

Label 2-214200-1.1-c1-0-103
Degree $2$
Conductor $214200$
Sign $-1$
Analytic cond. $1710.39$
Root an. cond. $41.3569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 2·13-s + 17-s − 2·29-s + 8·31-s + 6·37-s + 6·41-s − 4·43-s + 49-s + 14·53-s + 8·59-s + 14·61-s − 4·67-s − 8·71-s − 10·73-s + 8·79-s − 16·83-s − 2·89-s − 2·91-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 119-s + ⋯
L(s)  = 1  + 0.377·7-s − 0.554·13-s + 0.242·17-s − 0.371·29-s + 1.43·31-s + 0.986·37-s + 0.937·41-s − 0.609·43-s + 1/7·49-s + 1.92·53-s + 1.04·59-s + 1.79·61-s − 0.488·67-s − 0.949·71-s − 1.17·73-s + 0.900·79-s − 1.75·83-s − 0.211·89-s − 0.209·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 0.0916·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(214200\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1710.39\)
Root analytic conductor: \(41.3569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 214200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14400101829847, −12.93386382198948, −12.12419507181885, −11.83385378324797, −11.50971958733144, −10.88704412789098, −10.40634393725342, −9.875176659843537, −9.662520900450840, −8.903259114597721, −8.506959485216135, −8.035939465066578, −7.542593288768036, −7.025701492882430, −6.627841262955354, −5.877085019718140, −5.537429828181852, −4.993080037269705, −4.305773821942194, −4.078257628072422, −3.286721236383161, −2.512445845409600, −2.390089685026802, −1.358696622905816, −0.9049307646946152, 0, 0.9049307646946152, 1.358696622905816, 2.390089685026802, 2.512445845409600, 3.286721236383161, 4.078257628072422, 4.305773821942194, 4.993080037269705, 5.537429828181852, 5.877085019718140, 6.627841262955354, 7.025701492882430, 7.542593288768036, 8.035939465066578, 8.506959485216135, 8.903259114597721, 9.662520900450840, 9.875176659843537, 10.40634393725342, 10.88704412789098, 11.50971958733144, 11.83385378324797, 12.12419507181885, 12.93386382198948, 13.14400101829847

Graph of the $Z$-function along the critical line