Properties

Label 2-199272-1.1-c1-0-12
Degree $2$
Conductor $199272$
Sign $-1$
Analytic cond. $1591.19$
Root an. cond. $39.8897$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s − 2·13-s + 8·17-s − 2·21-s + 23-s − 5·25-s + 27-s − 2·29-s + 4·31-s − 6·37-s − 2·39-s − 10·41-s + 6·43-s − 3·49-s + 8·51-s − 12·53-s − 4·59-s − 10·61-s − 2·63-s + 6·67-s + 69-s + 2·73-s − 5·75-s + 6·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.554·13-s + 1.94·17-s − 0.436·21-s + 0.208·23-s − 25-s + 0.192·27-s − 0.371·29-s + 0.718·31-s − 0.986·37-s − 0.320·39-s − 1.56·41-s + 0.914·43-s − 3/7·49-s + 1.12·51-s − 1.64·53-s − 0.520·59-s − 1.28·61-s − 0.251·63-s + 0.733·67-s + 0.120·69-s + 0.234·73-s − 0.577·75-s + 0.675·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 199272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 199272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(199272\)    =    \(2^{3} \cdot 3 \cdot 19^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1591.19\)
Root analytic conductor: \(39.8897\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 199272,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.27419626720178, −12.79848184987562, −12.42597982355693, −11.93323996022786, −11.65338407714834, −10.78832173671951, −10.37488408452877, −9.919343118610112, −9.502057045753533, −9.273201630868792, −8.436416508345738, −8.100420508600434, −7.486244624469352, −7.314663377531442, −6.464828983683244, −6.166795526645995, −5.501653024669449, −4.992930382529547, −4.469003894016630, −3.632424321206991, −3.310763871085168, −2.988058263189855, −2.097629686384629, −1.627991839801812, −0.8130823468539019, 0, 0.8130823468539019, 1.627991839801812, 2.097629686384629, 2.988058263189855, 3.310763871085168, 3.632424321206991, 4.469003894016630, 4.992930382529547, 5.501653024669449, 6.166795526645995, 6.464828983683244, 7.314663377531442, 7.486244624469352, 8.100420508600434, 8.436416508345738, 9.273201630868792, 9.502057045753533, 9.919343118610112, 10.37488408452877, 10.78832173671951, 11.65338407714834, 11.93323996022786, 12.42597982355693, 12.79848184987562, 13.27419626720178

Graph of the $Z$-function along the critical line