| L(s)  = 1 | + 3-s         − 2·7-s     + 9-s         − 2·13-s         + 8·17-s         − 2·21-s     + 23-s     − 5·25-s     + 27-s     − 2·29-s     + 4·31-s             − 6·37-s     − 2·39-s     − 10·41-s     + 6·43-s             − 3·49-s     + 8·51-s     − 12·53-s             − 4·59-s     − 10·61-s     − 2·63-s         + 6·67-s     + 69-s         + 2·73-s     − 5·75-s         + 6·79-s     + 81-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s         − 0.755·7-s     + 1/3·9-s         − 0.554·13-s         + 1.94·17-s         − 0.436·21-s     + 0.208·23-s     − 25-s     + 0.192·27-s     − 0.371·29-s     + 0.718·31-s             − 0.986·37-s     − 0.320·39-s     − 1.56·41-s     + 0.914·43-s             − 3/7·49-s     + 1.12·51-s     − 1.64·53-s             − 0.520·59-s     − 1.28·61-s     − 0.251·63-s         + 0.733·67-s     + 0.120·69-s         + 0.234·73-s     − 0.577·75-s         + 0.675·79-s     + 1/9·81-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 199272 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 199272 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 19 | \( 1 \) |  | 
|  | 23 | \( 1 - T \) |  | 
| good | 5 | \( 1 + p T^{2} \) | 1.5.a | 
|  | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c | 
|  | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 - 8 T + p T^{2} \) | 1.17.ai | 
|  | 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c | 
|  | 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae | 
|  | 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g | 
|  | 41 | \( 1 + 10 T + p T^{2} \) | 1.41.k | 
|  | 43 | \( 1 - 6 T + p T^{2} \) | 1.43.ag | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 + 12 T + p T^{2} \) | 1.53.m | 
|  | 59 | \( 1 + 4 T + p T^{2} \) | 1.59.e | 
|  | 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k | 
|  | 67 | \( 1 - 6 T + p T^{2} \) | 1.67.ag | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 - 2 T + p T^{2} \) | 1.73.ac | 
|  | 79 | \( 1 - 6 T + p T^{2} \) | 1.79.ag | 
|  | 83 | \( 1 + p T^{2} \) | 1.83.a | 
|  | 89 | \( 1 - 12 T + p T^{2} \) | 1.89.am | 
|  | 97 | \( 1 + 6 T + p T^{2} \) | 1.97.g | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.27419626720178, −12.79848184987562, −12.42597982355693, −11.93323996022786, −11.65338407714834, −10.78832173671951, −10.37488408452877, −9.919343118610112, −9.502057045753533, −9.273201630868792, −8.436416508345738, −8.100420508600434, −7.486244624469352, −7.314663377531442, −6.464828983683244, −6.166795526645995, −5.501653024669449, −4.992930382529547, −4.469003894016630, −3.632424321206991, −3.310763871085168, −2.988058263189855, −2.097629686384629, −1.627991839801812, −0.8130823468539019, 0, 
0.8130823468539019, 1.627991839801812, 2.097629686384629, 2.988058263189855, 3.310763871085168, 3.632424321206991, 4.469003894016630, 4.992930382529547, 5.501653024669449, 6.166795526645995, 6.464828983683244, 7.314663377531442, 7.486244624469352, 8.100420508600434, 8.436416508345738, 9.273201630868792, 9.502057045753533, 9.919343118610112, 10.37488408452877, 10.78832173671951, 11.65338407714834, 11.93323996022786, 12.42597982355693, 12.79848184987562, 13.27419626720178
