Properties

Label 2-196650-1.1-c1-0-71
Degree $2$
Conductor $196650$
Sign $-1$
Analytic cond. $1570.25$
Root an. cond. $39.6264$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s − 11-s + 5·13-s − 14-s + 16-s − 2·17-s + 19-s + 22-s − 23-s − 5·26-s + 28-s + 9·29-s − 4·31-s − 32-s + 2·34-s − 8·37-s − 38-s + 10·41-s + 4·43-s − 44-s + 46-s − 7·47-s − 6·49-s + 5·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s − 0.301·11-s + 1.38·13-s − 0.267·14-s + 1/4·16-s − 0.485·17-s + 0.229·19-s + 0.213·22-s − 0.208·23-s − 0.980·26-s + 0.188·28-s + 1.67·29-s − 0.718·31-s − 0.176·32-s + 0.342·34-s − 1.31·37-s − 0.162·38-s + 1.56·41-s + 0.609·43-s − 0.150·44-s + 0.147·46-s − 1.02·47-s − 6/7·49-s + 0.693·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23\)
Sign: $-1$
Analytic conductor: \(1570.25\)
Root analytic conductor: \(39.6264\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 196650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
23 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 2 T + p T^{2} \) 1.17.c
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29543783001234, −12.81263868162375, −12.29477959930720, −11.84698268384863, −11.23217318740262, −10.96328584135951, −10.53121003912112, −10.10429507980177, −9.399256251945811, −9.055833493462983, −8.561843777904864, −8.067518294268555, −7.829354456851343, −7.040647838121596, −6.658433366732854, −6.125734431153754, −5.666740656325367, −5.013319404237538, −4.486460995759860, −3.817916923330189, −3.298123438339284, −2.667326131388612, −2.028343275949645, −1.395154417277562, −0.8715882750536373, 0, 0.8715882750536373, 1.395154417277562, 2.028343275949645, 2.667326131388612, 3.298123438339284, 3.817916923330189, 4.486460995759860, 5.013319404237538, 5.666740656325367, 6.125734431153754, 6.658433366732854, 7.040647838121596, 7.829354456851343, 8.067518294268555, 8.561843777904864, 9.055833493462983, 9.399256251945811, 10.10429507980177, 10.53121003912112, 10.96328584135951, 11.23217318740262, 11.84698268384863, 12.29477959930720, 12.81263868162375, 13.29543783001234

Graph of the $Z$-function along the critical line