Properties

Label 2-193550-1.1-c1-0-20
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 3·9-s − 11-s − 2·13-s + 16-s + 2·17-s + 3·18-s + 4·19-s + 22-s − 6·23-s + 2·26-s + 9·29-s − 6·31-s − 32-s − 2·34-s − 3·36-s + 9·37-s − 4·38-s + 2·41-s − 10·43-s − 44-s + 6·46-s + 3·47-s − 2·52-s + 7·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 9-s − 0.301·11-s − 0.554·13-s + 1/4·16-s + 0.485·17-s + 0.707·18-s + 0.917·19-s + 0.213·22-s − 1.25·23-s + 0.392·26-s + 1.67·29-s − 1.07·31-s − 0.176·32-s − 0.342·34-s − 1/2·36-s + 1.47·37-s − 0.648·38-s + 0.312·41-s − 1.52·43-s − 0.150·44-s + 0.884·46-s + 0.437·47-s − 0.277·52-s + 0.961·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.616340975\)
\(L(\frac12)\) \(\approx\) \(1.616340975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 11 T + p T^{2} \) 1.71.al
73 \( 1 - 13 T + p T^{2} \) 1.73.an
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.02521372990181, −12.46517513018880, −12.00316274068065, −11.71430518765933, −11.21863536056257, −10.68346809651751, −10.20682054308606, −9.712207070269691, −9.441522694532669, −8.775150218847319, −8.298611269741251, −7.815508927151366, −7.646184234062210, −6.785005779332442, −6.434105755320592, −5.824694788142750, −5.313481051409445, −4.946589096893838, −4.111144977728276, −3.454017182404589, −2.992880777547968, −2.334400089908396, −1.955734850628265, −0.8945362241135673, −0.5055413472506377, 0.5055413472506377, 0.8945362241135673, 1.955734850628265, 2.334400089908396, 2.992880777547968, 3.454017182404589, 4.111144977728276, 4.946589096893838, 5.313481051409445, 5.824694788142750, 6.434105755320592, 6.785005779332442, 7.646184234062210, 7.815508927151366, 8.298611269741251, 8.775150218847319, 9.441522694532669, 9.712207070269691, 10.20682054308606, 10.68346809651751, 11.21863536056257, 11.71430518765933, 12.00316274068065, 12.46517513018880, 13.02521372990181

Graph of the $Z$-function along the critical line