Properties

Label 2-193550-1.1-c1-0-46
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·3-s + 4-s + 3·6-s + 8-s + 6·9-s − 3·11-s + 3·12-s + 5·13-s + 16-s + 5·17-s + 6·18-s − 3·22-s − 8·23-s + 3·24-s + 5·26-s + 9·27-s − 2·29-s − 31-s + 32-s − 9·33-s + 5·34-s + 6·36-s − 7·37-s + 15·39-s + 6·41-s − 10·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.73·3-s + 1/2·4-s + 1.22·6-s + 0.353·8-s + 2·9-s − 0.904·11-s + 0.866·12-s + 1.38·13-s + 1/4·16-s + 1.21·17-s + 1.41·18-s − 0.639·22-s − 1.66·23-s + 0.612·24-s + 0.980·26-s + 1.73·27-s − 0.371·29-s − 0.179·31-s + 0.176·32-s − 1.56·33-s + 0.857·34-s + 36-s − 1.15·37-s + 2.40·39-s + 0.937·41-s − 1.52·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(10.33451793\)
\(L(\frac12)\) \(\approx\) \(10.33451793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 6 T + p T^{2} \) 1.73.g
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29570987700177, −12.80361602611166, −12.36701891722665, −11.78515134989406, −11.34903124689161, −10.42606047231576, −10.32388554041565, −9.941913173266960, −9.061198922393151, −8.842491494393776, −8.244446537311180, −7.802429139653981, −7.570722513992118, −6.943230434573050, −6.260824823875722, −5.711557906276542, −5.332590629015362, −4.517842974265814, −3.894660065055531, −3.670397010730285, −3.136419671017563, −2.618276966837642, −1.938973493725222, −1.598674217784864, −0.6826163133432745, 0.6826163133432745, 1.598674217784864, 1.938973493725222, 2.618276966837642, 3.136419671017563, 3.670397010730285, 3.894660065055531, 4.517842974265814, 5.332590629015362, 5.711557906276542, 6.260824823875722, 6.943230434573050, 7.570722513992118, 7.802429139653981, 8.244446537311180, 8.842491494393776, 9.061198922393151, 9.941913173266960, 10.32388554041565, 10.42606047231576, 11.34903124689161, 11.78515134989406, 12.36701891722665, 12.80361602611166, 13.29570987700177

Graph of the $Z$-function along the critical line