Properties

Label 2-193550-1.1-c1-0-25
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s − 2·9-s + 4·11-s − 12-s − 4·13-s + 16-s + 2·17-s − 2·18-s + 6·19-s + 4·22-s + 23-s − 24-s − 4·26-s + 5·27-s + 3·29-s − 4·31-s + 32-s − 4·33-s + 2·34-s − 2·36-s − 6·37-s + 6·38-s + 4·39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s − 2/3·9-s + 1.20·11-s − 0.288·12-s − 1.10·13-s + 1/4·16-s + 0.485·17-s − 0.471·18-s + 1.37·19-s + 0.852·22-s + 0.208·23-s − 0.204·24-s − 0.784·26-s + 0.962·27-s + 0.557·29-s − 0.718·31-s + 0.176·32-s − 0.696·33-s + 0.342·34-s − 1/3·36-s − 0.986·37-s + 0.973·38-s + 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.613968262\)
\(L(\frac12)\) \(\approx\) \(3.613968262\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + T + p T^{2} \) 1.41.b
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.01411204910567, −12.42924820848376, −12.13381900149517, −11.78835732840900, −11.39082626591793, −10.97630415387174, −10.23802008052655, −9.947126317292862, −9.331453649396228, −8.887269900418303, −8.314643183426327, −7.622218349093591, −7.230017836793160, −6.703199739049858, −6.319488548102611, −5.634367651257363, −5.249392479535112, −4.938032212995759, −4.264837140772695, −3.489974261730375, −3.314186321004526, −2.518442248058041, −1.926463223172612, −1.113440228986848, −0.5431755283029146, 0.5431755283029146, 1.113440228986848, 1.926463223172612, 2.518442248058041, 3.314186321004526, 3.489974261730375, 4.264837140772695, 4.938032212995759, 5.249392479535112, 5.634367651257363, 6.319488548102611, 6.703199739049858, 7.230017836793160, 7.622218349093591, 8.314643183426327, 8.887269900418303, 9.331453649396228, 9.947126317292862, 10.23802008052655, 10.97630415387174, 11.39082626591793, 11.78835732840900, 12.13381900149517, 12.42924820848376, 13.01411204910567

Graph of the $Z$-function along the critical line