Properties

Label 2-193550-1.1-c1-0-61
Degree $2$
Conductor $193550$
Sign $-1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s + 4-s + 3·6-s − 8-s + 6·9-s − 2·11-s − 3·12-s − 5·13-s + 16-s + 6·17-s − 6·18-s + 2·22-s + 2·23-s + 3·24-s + 5·26-s − 9·27-s + 6·29-s + 10·31-s − 32-s + 6·33-s − 6·34-s + 6·36-s + 10·37-s + 15·39-s − 2·41-s − 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s + 1/2·4-s + 1.22·6-s − 0.353·8-s + 2·9-s − 0.603·11-s − 0.866·12-s − 1.38·13-s + 1/4·16-s + 1.45·17-s − 1.41·18-s + 0.426·22-s + 0.417·23-s + 0.612·24-s + 0.980·26-s − 1.73·27-s + 1.11·29-s + 1.79·31-s − 0.176·32-s + 1.04·33-s − 1.02·34-s + 36-s + 1.64·37-s + 2.40·39-s − 0.312·41-s − 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 + 6 T + p T^{2} \) 1.73.g
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14551064309102, −12.60091057486514, −12.14758882864014, −11.79822953240933, −11.67628824573823, −10.83200558074174, −10.49452148152372, −10.04523872221619, −9.853731480527089, −9.305450903573869, −8.485565036675675, −7.848246701922250, −7.691556895673293, −6.977414378862058, −6.603845098399289, −6.100409782583568, −5.559356568058209, −5.099056665597512, −4.696935486668941, −4.179604146028327, −3.133576932295985, −2.731080762560503, −1.981778516184472, −1.017492679459282, −0.8139929797770584, 0, 0.8139929797770584, 1.017492679459282, 1.981778516184472, 2.731080762560503, 3.133576932295985, 4.179604146028327, 4.696935486668941, 5.099056665597512, 5.559356568058209, 6.100409782583568, 6.603845098399289, 6.977414378862058, 7.691556895673293, 7.848246701922250, 8.485565036675675, 9.305450903573869, 9.853731480527089, 10.04523872221619, 10.49452148152372, 10.83200558074174, 11.67628824573823, 11.79822953240933, 12.14758882864014, 12.60091057486514, 13.14551064309102

Graph of the $Z$-function along the critical line