Properties

Label 2-189728-1.1-c1-0-4
Degree $2$
Conductor $189728$
Sign $1$
Analytic cond. $1514.98$
Root an. cond. $38.9228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6·9-s − 13-s + 2·17-s − 2·19-s − 6·23-s − 5·25-s − 9·27-s + 29-s − 4·31-s − 2·37-s + 3·39-s − 2·41-s + 8·43-s + 6·47-s − 6·51-s − 8·53-s + 6·57-s + 59-s − 5·61-s − 9·67-s + 18·69-s − 4·71-s − 10·73-s + 15·75-s + 9·79-s + 9·81-s + ⋯
L(s)  = 1  − 1.73·3-s + 2·9-s − 0.277·13-s + 0.485·17-s − 0.458·19-s − 1.25·23-s − 25-s − 1.73·27-s + 0.185·29-s − 0.718·31-s − 0.328·37-s + 0.480·39-s − 0.312·41-s + 1.21·43-s + 0.875·47-s − 0.840·51-s − 1.09·53-s + 0.794·57-s + 0.130·59-s − 0.640·61-s − 1.09·67-s + 2.16·69-s − 0.474·71-s − 1.17·73-s + 1.73·75-s + 1.01·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(1514.98\)
Root analytic conductor: \(38.9228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 189728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4190025848\)
\(L(\frac12)\) \(\approx\) \(0.4190025848\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98862246670275, −12.37282257974678, −12.06297177026528, −11.91266835522876, −11.20101884932890, −10.75191161167770, −10.48785000291610, −9.919414149440611, −9.521698832265548, −8.956531999048443, −8.218289400425728, −7.643387229808396, −7.341182445411393, −6.703880138055256, −6.148048744744709, −5.794598036029986, −5.518332842448106, −4.694611298922524, −4.440713468475350, −3.818245736789651, −3.197381851545405, −2.209201809808318, −1.756878189488406, −0.9960514325221239, −0.2391176523518854, 0.2391176523518854, 0.9960514325221239, 1.756878189488406, 2.209201809808318, 3.197381851545405, 3.818245736789651, 4.440713468475350, 4.694611298922524, 5.518332842448106, 5.794598036029986, 6.148048744744709, 6.703880138055256, 7.341182445411393, 7.643387229808396, 8.218289400425728, 8.956531999048443, 9.521698832265548, 9.919414149440611, 10.48785000291610, 10.75191161167770, 11.20101884932890, 11.91266835522876, 12.06297177026528, 12.37282257974678, 12.98862246670275

Graph of the $Z$-function along the critical line