| L(s) = 1 | − 2·4-s + 3·5-s + 7-s + 6·11-s − 4·13-s + 4·16-s + 3·17-s + 2·19-s − 6·20-s − 6·23-s + 4·25-s − 2·28-s − 6·29-s − 4·31-s + 3·35-s − 7·37-s − 3·41-s − 43-s − 12·44-s + 9·47-s + 49-s + 8·52-s − 6·53-s + 18·55-s + 9·59-s − 10·61-s − 8·64-s + ⋯ |
| L(s) = 1 | − 4-s + 1.34·5-s + 0.377·7-s + 1.80·11-s − 1.10·13-s + 16-s + 0.727·17-s + 0.458·19-s − 1.34·20-s − 1.25·23-s + 4/5·25-s − 0.377·28-s − 1.11·29-s − 0.718·31-s + 0.507·35-s − 1.15·37-s − 0.468·41-s − 0.152·43-s − 1.80·44-s + 1.31·47-s + 1/7·49-s + 1.10·52-s − 0.824·53-s + 2.42·55-s + 1.17·59-s − 1.28·61-s − 64-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
| L(1) |
≈ |
1.245344016 |
| L(21) |
≈ |
1.245344016 |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) | Isogeny Class over Fp |
|---|
| bad | 3 | 1 | |
| 7 | 1−T | |
| good | 2 | 1+pT2 | 1.2.a |
| 5 | 1−3T+pT2 | 1.5.ad |
| 11 | 1−6T+pT2 | 1.11.ag |
| 13 | 1+4T+pT2 | 1.13.e |
| 17 | 1−3T+pT2 | 1.17.ad |
| 19 | 1−2T+pT2 | 1.19.ac |
| 23 | 1+6T+pT2 | 1.23.g |
| 29 | 1+6T+pT2 | 1.29.g |
| 31 | 1+4T+pT2 | 1.31.e |
| 37 | 1+7T+pT2 | 1.37.h |
| 41 | 1+3T+pT2 | 1.41.d |
| 43 | 1+T+pT2 | 1.43.b |
| 47 | 1−9T+pT2 | 1.47.aj |
| 53 | 1+6T+pT2 | 1.53.g |
| 59 | 1−9T+pT2 | 1.59.aj |
| 61 | 1+10T+pT2 | 1.61.k |
| 67 | 1+4T+pT2 | 1.67.e |
| 71 | 1+pT2 | 1.71.a |
| 73 | 1−2T+pT2 | 1.73.ac |
| 79 | 1+T+pT2 | 1.79.b |
| 83 | 1−3T+pT2 | 1.83.ad |
| 89 | 1−6T+pT2 | 1.89.ag |
| 97 | 1+10T+pT2 | 1.97.k |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.58433731583081615557168762807, −11.80712467067776826965075311823, −10.22213033820361484191010028356, −9.540146555327995507333228878724, −8.905165354580512836683090859524, −7.46477788862935127887709071190, −6.04902466517769458594559190180, −5.13832633779419862585354738180, −3.79566092998735399945677628017, −1.69414023663856774565794959548,
1.69414023663856774565794959548, 3.79566092998735399945677628017, 5.13832633779419862585354738180, 6.04902466517769458594559190180, 7.46477788862935127887709071190, 8.905165354580512836683090859524, 9.540146555327995507333228878724, 10.22213033820361484191010028356, 11.80712467067776826965075311823, 12.58433731583081615557168762807